2023-06-14 19:55:38 -07:00
|
|
|
"""Benchmark the latency of processing a single batch of requests."""
|
2023-04-01 00:51:08 +08:00
|
|
|
import argparse
|
2024-10-22 17:40:38 -05:00
|
|
|
import dataclasses
|
2024-05-16 10:02:56 -07:00
|
|
|
import json
|
2023-04-01 00:51:08 +08:00
|
|
|
import time
|
2023-12-05 20:55:55 -08:00
|
|
|
from pathlib import Path
|
2024-05-29 04:29:31 +08:00
|
|
|
from typing import List, Optional
|
2023-04-01 00:51:08 +08:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
2023-05-22 17:03:40 -07:00
|
|
|
from tqdm import tqdm
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2023-06-17 03:07:40 -07:00
|
|
|
from vllm import LLM, SamplingParams
|
2024-10-22 17:40:38 -05:00
|
|
|
from vllm.engine.arg_utils import EngineArgs
|
2024-09-27 11:35:15 +08:00
|
|
|
from vllm.inputs import PromptType
|
2024-06-20 19:00:13 -04:00
|
|
|
from vllm.utils import FlexibleArgumentParser
|
2023-04-01 00:51:08 +08:00
|
|
|
|
|
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
2023-05-22 17:03:40 -07:00
|
|
|
print(args)
|
|
|
|
|
2024-10-22 17:40:38 -05:00
|
|
|
engine_args = EngineArgs.from_cli_args(args)
|
|
|
|
|
2023-05-22 17:03:40 -07:00
|
|
|
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
2023-06-17 17:25:21 +08:00
|
|
|
# the engine will automatically process the request in multiple batches.
|
2024-10-22 17:40:38 -05:00
|
|
|
llm = LLM(**dataclasses.asdict(engine_args))
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2023-05-11 15:45:30 -07:00
|
|
|
sampling_params = SamplingParams(
|
|
|
|
n=args.n,
|
2024-10-06 22:47:04 -07:00
|
|
|
temperature=1.0,
|
2023-05-11 15:45:30 -07:00
|
|
|
top_p=1.0,
|
2023-05-22 17:03:40 -07:00
|
|
|
ignore_eos=True,
|
2023-05-11 15:45:30 -07:00
|
|
|
max_tokens=args.output_len,
|
|
|
|
)
|
2023-04-07 17:45:07 -07:00
|
|
|
print(sampling_params)
|
2024-02-05 12:45:37 -08:00
|
|
|
dummy_prompt_token_ids = np.random.randint(10000,
|
|
|
|
size=(args.batch_size,
|
|
|
|
args.input_len))
|
2024-09-27 11:35:15 +08:00
|
|
|
dummy_prompts: List[PromptType] = [{
|
2024-05-29 04:29:31 +08:00
|
|
|
"prompt_token_ids": batch
|
|
|
|
} for batch in dummy_prompt_token_ids.tolist()]
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2023-12-05 20:55:55 -08:00
|
|
|
def run_to_completion(profile_dir: Optional[str] = None):
|
|
|
|
if profile_dir:
|
|
|
|
with torch.profiler.profile(
|
|
|
|
activities=[
|
|
|
|
torch.profiler.ProfilerActivity.CPU,
|
|
|
|
torch.profiler.ProfilerActivity.CUDA,
|
|
|
|
],
|
|
|
|
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
|
|
str(profile_dir))) as p:
|
2024-09-27 11:35:15 +08:00
|
|
|
llm.generate(dummy_prompts,
|
2023-11-29 23:42:52 -08:00
|
|
|
sampling_params=sampling_params,
|
|
|
|
use_tqdm=False)
|
2025-01-07 20:57:04 -06:00
|
|
|
print(p.key_averages().table(sort_by="self_cuda_time_total"))
|
2023-11-29 23:42:52 -08:00
|
|
|
else:
|
|
|
|
start_time = time.perf_counter()
|
2024-09-27 11:35:15 +08:00
|
|
|
llm.generate(dummy_prompts,
|
2023-11-29 23:42:52 -08:00
|
|
|
sampling_params=sampling_params,
|
|
|
|
use_tqdm=False)
|
|
|
|
end_time = time.perf_counter()
|
|
|
|
latency = end_time - start_time
|
|
|
|
return latency
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2023-05-22 17:03:40 -07:00
|
|
|
print("Warming up...")
|
2024-04-06 14:32:30 -07:00
|
|
|
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
|
|
|
|
run_to_completion(profile_dir=None)
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2023-11-29 23:42:52 -08:00
|
|
|
if args.profile:
|
2023-12-05 20:55:55 -08:00
|
|
|
profile_dir = args.profile_result_dir
|
|
|
|
if not profile_dir:
|
2024-01-24 00:26:37 +01:00
|
|
|
profile_dir = Path(
|
|
|
|
"."
|
|
|
|
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
|
2023-12-05 20:55:55 -08:00
|
|
|
print(f"Profiling (results will be saved to '{profile_dir}')...")
|
2024-02-05 12:45:37 -08:00
|
|
|
run_to_completion(profile_dir=profile_dir)
|
2023-11-29 23:42:52 -08:00
|
|
|
return
|
|
|
|
|
2023-04-01 00:51:08 +08:00
|
|
|
# Benchmark.
|
|
|
|
latencies = []
|
2023-05-22 17:03:40 -07:00
|
|
|
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
|
2023-12-11 11:19:08 -08:00
|
|
|
latencies.append(run_to_completion(profile_dir=None))
|
2024-04-06 14:32:30 -07:00
|
|
|
latencies = np.array(latencies)
|
2024-06-17 11:41:08 -07:00
|
|
|
percentages = [10, 25, 50, 75, 90, 99]
|
2024-04-06 14:32:30 -07:00
|
|
|
percentiles = np.percentile(latencies, percentages)
|
2023-04-01 00:51:08 +08:00
|
|
|
print(f'Avg latency: {np.mean(latencies)} seconds')
|
2024-04-06 14:32:30 -07:00
|
|
|
for percentage, percentile in zip(percentages, percentiles):
|
|
|
|
print(f'{percentage}% percentile latency: {percentile} seconds')
|
2023-04-01 00:51:08 +08:00
|
|
|
|
2024-05-16 10:02:56 -07:00
|
|
|
# Output JSON results if specified
|
|
|
|
if args.output_json:
|
|
|
|
results = {
|
|
|
|
"avg_latency": np.mean(latencies),
|
|
|
|
"latencies": latencies.tolist(),
|
|
|
|
"percentiles": dict(zip(percentages, percentiles.tolist())),
|
|
|
|
}
|
|
|
|
with open(args.output_json, "w") as f:
|
|
|
|
json.dump(results, f, indent=4)
|
|
|
|
|
2023-04-01 00:51:08 +08:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2024-06-20 19:00:13 -04:00
|
|
|
parser = FlexibleArgumentParser(
|
2023-05-22 17:03:40 -07:00
|
|
|
description='Benchmark the latency of processing a single batch of '
|
2023-09-16 00:03:37 -07:00
|
|
|
'requests till completion.')
|
2023-04-01 00:51:08 +08:00
|
|
|
parser.add_argument('--input-len', type=int, default=32)
|
|
|
|
parser.add_argument('--output-len', type=int, default=128)
|
|
|
|
parser.add_argument('--batch-size', type=int, default=8)
|
2023-09-16 00:03:37 -07:00
|
|
|
parser.add_argument('--n',
|
|
|
|
type=int,
|
|
|
|
default=1,
|
2023-05-22 17:03:40 -07:00
|
|
|
help='Number of generated sequences per prompt.')
|
2023-04-07 17:45:07 -07:00
|
|
|
parser.add_argument('--use-beam-search', action='store_true')
|
2024-04-06 14:32:30 -07:00
|
|
|
parser.add_argument('--num-iters-warmup',
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help='Number of iterations to run for warmup.')
|
2023-09-16 00:03:37 -07:00
|
|
|
parser.add_argument('--num-iters',
|
|
|
|
type=int,
|
2024-04-06 14:32:30 -07:00
|
|
|
default=30,
|
2023-05-22 17:03:40 -07:00
|
|
|
help='Number of iterations to run.')
|
2023-11-29 23:42:52 -08:00
|
|
|
parser.add_argument(
|
|
|
|
'--profile',
|
|
|
|
action='store_true',
|
|
|
|
help='profile the generation process of a single batch')
|
2023-12-05 20:55:55 -08:00
|
|
|
parser.add_argument(
|
|
|
|
'--profile-result-dir',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
2024-01-24 00:26:37 +01:00
|
|
|
help=('path to save the pytorch profiler output. Can be visualized '
|
|
|
|
'with ui.perfetto.dev or Tensorboard.'))
|
2024-05-16 10:02:56 -07:00
|
|
|
parser.add_argument(
|
|
|
|
'--output-json',
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help='Path to save the latency results in JSON format.')
|
2024-10-22 17:40:38 -05:00
|
|
|
|
|
|
|
parser = EngineArgs.add_cli_args(parser)
|
2023-04-01 00:51:08 +08:00
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|