2024-09-11 23:41:55 +02:00
|
|
|
"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
|
|
|
|
|
|
|
|
Run `pytest tests/models/test_mistral.py`.
|
|
|
|
"""
|
2024-09-13 11:47:52 +08:00
|
|
|
import json
|
2024-09-13 00:21:51 +02:00
|
|
|
import uuid
|
2024-09-13 11:47:52 +08:00
|
|
|
from dataclasses import asdict
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple
|
2024-09-13 00:21:51 +02:00
|
|
|
|
2024-09-11 23:41:55 +02:00
|
|
|
import pytest
|
2024-09-13 00:21:51 +02:00
|
|
|
from mistral_common.protocol.instruct.messages import ImageURLChunk
|
|
|
|
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
|
|
|
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
|
|
|
from mistral_common.tokens.tokenizers.multimodal import image_from_chunk
|
|
|
|
|
|
|
|
from vllm import EngineArgs, LLMEngine, SamplingParams, TokensPrompt
|
|
|
|
from vllm.multimodal import MultiModalDataBuiltins
|
2024-09-13 11:47:52 +08:00
|
|
|
from vllm.sequence import Logprob, SampleLogprobs
|
2024-09-11 23:41:55 +02:00
|
|
|
|
2024-09-13 00:21:51 +02:00
|
|
|
from .utils import check_logprobs_close
|
2024-09-11 23:41:55 +02:00
|
|
|
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
|
|
|
|
MODELS = ["mistralai/Pixtral-12B-2409"]
|
2024-09-13 00:21:51 +02:00
|
|
|
IMG_URLS = [
|
|
|
|
"https://picsum.photos/id/237/400/300",
|
|
|
|
"https://picsum.photos/id/231/200/300",
|
|
|
|
"https://picsum.photos/id/27/500/500",
|
|
|
|
"https://picsum.photos/id/17/150/600",
|
|
|
|
]
|
|
|
|
PROMPT = "Describe each image in one short sentence."
|
|
|
|
|
|
|
|
|
|
|
|
def _create_msg_format(urls: List[str]) -> List[Dict[str, Any]]:
|
|
|
|
return [{
|
|
|
|
"role":
|
|
|
|
"user",
|
|
|
|
"content": [{
|
|
|
|
"type": "text",
|
|
|
|
"text": PROMPT,
|
|
|
|
}] + [{
|
|
|
|
"type": "image_url",
|
|
|
|
"image_url": {
|
|
|
|
"url": url
|
|
|
|
}
|
|
|
|
} for url in urls],
|
|
|
|
}]
|
|
|
|
|
|
|
|
|
|
|
|
def _create_engine_inputs(urls: List[str]) -> TokensPrompt:
|
|
|
|
msg = _create_msg_format(urls)
|
|
|
|
|
|
|
|
tokenizer = MistralTokenizer.from_model("pixtral")
|
|
|
|
|
|
|
|
request = ChatCompletionRequest(messages=msg) # type: ignore[type-var]
|
|
|
|
tokenized = tokenizer.encode_chat_completion(request)
|
|
|
|
|
|
|
|
engine_inputs = TokensPrompt(prompt_token_ids=tokenized.tokens)
|
|
|
|
|
|
|
|
images = []
|
|
|
|
for chunk in request.messages[0].content:
|
|
|
|
if isinstance(chunk, ImageURLChunk):
|
|
|
|
images.append(image_from_chunk(chunk))
|
|
|
|
|
|
|
|
mm_data = MultiModalDataBuiltins(image=images)
|
|
|
|
engine_inputs["multi_modal_data"] = mm_data
|
|
|
|
|
|
|
|
return engine_inputs
|
|
|
|
|
|
|
|
|
|
|
|
MSGS = [
|
|
|
|
_create_msg_format(IMG_URLS[:1]),
|
|
|
|
_create_msg_format(IMG_URLS[:2]),
|
|
|
|
_create_msg_format(IMG_URLS),
|
|
|
|
]
|
|
|
|
ENGINE_INPUTS = [
|
|
|
|
_create_engine_inputs(IMG_URLS[:1]),
|
|
|
|
_create_engine_inputs(IMG_URLS[:2]),
|
|
|
|
_create_engine_inputs(IMG_URLS),
|
|
|
|
]
|
|
|
|
|
|
|
|
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
|
|
|
|
LIMIT_MM_PER_PROMPT = dict(image=4)
|
|
|
|
|
|
|
|
MAX_MODEL_LEN = [8192, 65536]
|
2024-09-13 11:47:52 +08:00
|
|
|
FIXTURE_LOGPROBS_CHAT = "tests/models/fixtures/pixtral_chat.json"
|
|
|
|
FIXTURE_LOGPROBS_ENGINE = "tests/models/fixtures/pixtral_chat_engine.json"
|
2024-09-13 00:21:51 +02:00
|
|
|
|
2024-09-13 11:47:52 +08:00
|
|
|
OutputsLogprobs = List[Tuple[List[int], str, Optional[SampleLogprobs]]]
|
2024-09-13 00:21:51 +02:00
|
|
|
|
2024-09-13 11:47:52 +08:00
|
|
|
|
|
|
|
# For the test author to store golden output in JSON
|
|
|
|
def _dump_outputs_w_logprobs(outputs: OutputsLogprobs, filename: str) -> None:
|
|
|
|
json_data = [(tokens, text,
|
|
|
|
[{k: asdict(v)
|
|
|
|
for k, v in token_logprobs.items()}
|
|
|
|
for token_logprobs in (logprobs or [])])
|
|
|
|
for tokens, text, logprobs in outputs]
|
|
|
|
|
|
|
|
with open(filename, "w") as f:
|
|
|
|
json.dump(json_data, f)
|
|
|
|
|
|
|
|
|
|
|
|
def load_outputs_w_logprobs(filename: str) -> OutputsLogprobs:
|
|
|
|
with open(filename, "rb") as f:
|
|
|
|
json_data = json.load(f)
|
|
|
|
|
|
|
|
return [(tokens, text,
|
|
|
|
[{int(k): Logprob(**v)
|
|
|
|
for k, v in token_logprobs.items()}
|
|
|
|
for token_logprobs in logprobs])
|
|
|
|
for tokens, text, logprobs in json_data]
|
2024-09-11 23:41:55 +02:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip(
|
|
|
|
reason=
|
|
|
|
"Model is too big, test passed on A100 locally but will OOM on CI machine."
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
2024-09-13 00:21:51 +02:00
|
|
|
@pytest.mark.parametrize("max_model_len", MAX_MODEL_LEN)
|
2024-09-11 23:41:55 +02:00
|
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
2024-09-13 00:21:51 +02:00
|
|
|
def test_chat(
|
2024-09-11 23:41:55 +02:00
|
|
|
vllm_runner,
|
2024-09-13 00:21:51 +02:00
|
|
|
max_model_len: int,
|
2024-09-11 23:41:55 +02:00
|
|
|
model: str,
|
|
|
|
dtype: str,
|
|
|
|
) -> None:
|
2024-09-13 11:47:52 +08:00
|
|
|
EXPECTED_CHAT_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_CHAT)
|
2024-09-13 00:21:51 +02:00
|
|
|
with vllm_runner(
|
|
|
|
model,
|
|
|
|
dtype=dtype,
|
|
|
|
tokenizer_mode="mistral",
|
|
|
|
enable_chunked_prefill=False,
|
|
|
|
max_model_len=max_model_len,
|
|
|
|
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
|
|
|
|
) as vllm_model:
|
|
|
|
outputs = []
|
|
|
|
for msg in MSGS:
|
|
|
|
output = vllm_model.model.chat(msg,
|
|
|
|
sampling_params=SAMPLING_PARAMS)
|
|
|
|
|
|
|
|
outputs.extend(output)
|
|
|
|
|
|
|
|
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
|
2024-09-13 11:47:52 +08:00
|
|
|
check_logprobs_close(outputs_0_lst=EXPECTED_CHAT_LOGPROBS,
|
|
|
|
outputs_1_lst=logprobs,
|
|
|
|
name_0="h100_ref",
|
|
|
|
name_1="output")
|
2024-09-13 00:21:51 +02:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip(
|
|
|
|
reason=
|
|
|
|
"Model is too big, test passed on A100 locally but will OOM on CI machine."
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
|
|
def test_model_engine(vllm_runner, model: str, dtype: str) -> None:
|
2024-09-13 11:47:52 +08:00
|
|
|
EXPECTED_ENGINE_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_ENGINE)
|
2024-09-13 00:21:51 +02:00
|
|
|
args = EngineArgs(
|
|
|
|
model=model,
|
|
|
|
tokenizer_mode="mistral",
|
|
|
|
enable_chunked_prefill=False,
|
|
|
|
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
|
|
|
|
dtype=dtype,
|
|
|
|
)
|
|
|
|
engine = LLMEngine.from_engine_args(args)
|
|
|
|
|
|
|
|
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[0], SAMPLING_PARAMS)
|
|
|
|
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[1], SAMPLING_PARAMS)
|
|
|
|
|
|
|
|
outputs = []
|
|
|
|
count = 0
|
|
|
|
while True:
|
|
|
|
out = engine.step()
|
|
|
|
count += 1
|
|
|
|
for request_output in out:
|
|
|
|
if request_output.finished:
|
|
|
|
outputs.append(request_output)
|
|
|
|
|
|
|
|
if count == 2:
|
|
|
|
engine.add_request(uuid.uuid4().hex, ENGINE_INPUTS[2],
|
|
|
|
SAMPLING_PARAMS)
|
|
|
|
if not engine.has_unfinished_requests():
|
|
|
|
break
|
|
|
|
|
|
|
|
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
|
2024-09-13 11:47:52 +08:00
|
|
|
check_logprobs_close(outputs_0_lst=EXPECTED_ENGINE_LOGPROBS,
|
|
|
|
outputs_1_lst=logprobs,
|
|
|
|
name_0="h100_ref",
|
|
|
|
name_1="output")
|