vllm/tests/models/test_gguf.py

91 lines
3.0 KiB
Python
Raw Normal View History

"""
Tests gguf models against unquantized models generations
Note: To pass the test, quantization higher than Q4 should be used
"""
import os
import pytest
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer
from tests.quantization.utils import is_quant_method_supported
from .utils import check_logprobs_close
os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
# FIXME: Move this to confest
MODELS = [
("TinyLlama/TinyLlama-1.1B-Chat-v1.0",
hf_hub_download("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf")),
("TinyLlama/TinyLlama-1.1B-Chat-v1.0",
hf_hub_download("duyntnet/TinyLlama-1.1B-Chat-v1.0-imatrix-GGUF",
filename="TinyLlama-1.1B-Chat-v1.0-IQ4_XS.gguf")),
("Qwen/Qwen2-1.5B-Instruct",
hf_hub_download("Qwen/Qwen2-1.5B-Instruct-GGUF",
filename="qwen2-1_5b-instruct-q4_k_m.gguf")),
("Qwen/Qwen2-1.5B-Instruct",
hf_hub_download("legraphista/Qwen2-1.5B-Instruct-IMat-GGUF",
filename="Qwen2-1.5B-Instruct.IQ4_XS.gguf")),
]
@pytest.mark.skipif(not is_quant_method_supported("gguf"),
reason="gguf is not supported on this GPU type.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("tp_size", [1, 2])
def test_models(
num_gpus_available,
vllm_runner,
example_prompts,
model,
dtype: str,
max_tokens: int,
num_logprobs: int,
tp_size: int,
) -> None:
if num_gpus_available < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
original_model, gguf_model = model
tokenizer = AutoTokenizer.from_pretrained(original_model)
messages = [[{
'role': 'user',
'content': prompt
}] for prompt in example_prompts]
example_prompts = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Run unquantized model.
with vllm_runner(model_name=original_model,
dtype=dtype,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tp_size) as original_model:
original_outputs = original_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
# Run gguf model.
with vllm_runner(model_name=gguf_model,
dtype=dtype,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tp_size) as gguf_model:
gguf_outputs = gguf_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=original_outputs,
outputs_1_lst=gguf_outputs,
name_0="original",
name_1="gguf",
)