vllm/tests/kernels/test_fp8_quant.py

115 lines
4.4 KiB
Python
Raw Normal View History

import pytest
import torch
import vllm._custom_ops as ops
from tests.kernels.quant_utils import (FP8_DTYPE,
ref_dynamic_per_tensor_fp8_quant,
ref_dynamic_per_token_quant)
from tests.kernels.utils import opcheck
from vllm.utils import seed_everything
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
8193] # Arbitrary values for testing
HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
SCALE_UBS = [True, False]
SEEDS = [0]
def opcheck_fp8_quant(output,
input,
scale=None,
scale_ub=None,
use_per_token_if_dynamic=False):
if scale is not None:
opcheck(torch.ops._C.static_scaled_fp8_quant, (output, input, scale))
elif use_per_token_if_dynamic:
scale = torch.empty((input.shape[0], 1),
device=input.device,
dtype=torch.float32)
opcheck(torch.ops._C.dynamic_per_token_scaled_fp8_quant,
(output, input, scale, scale_ub))
else:
scale = torch.empty((input.numel() // input.shape[-1], 1),
device=input.device,
dtype=torch.float32)
opcheck(torch.ops._C.dynamic_scaled_fp8_quant, (output, input, scale))
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, scale_ub: bool,
seed: int) -> None:
seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
device="cuda") + 1e-6 # avoid nans
scale_ub = torch.mean(x).to(dtype=torch.float32, device='cuda') \
if scale_ub else None
ref_out, ref_scales = ref_dynamic_per_token_quant(x, FP8_DTYPE, scale_ub)
ops_out, ops_scales = ops.scaled_fp8_quant(x,
scale_ub=scale_ub,
use_per_token_if_dynamic=True)
torch.testing.assert_close(ref_scales, ops_scales)
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
opcheck_fp8_quant(ops_out,
x,
None,
scale_ub,
use_per_token_if_dynamic=True)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x)
ops_out, ops_scale = ops.scaled_fp8_quant(x)
torch.testing.assert_close(ref_scale, ops_scale)
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
opcheck_fp8_quant(ops_out, x)
# Regression test for a case with large activations where an int32 index cannot
# represent the number of elements.
@torch.inference_mode()
@pytest.mark.parametrize("seed", SEEDS)
def test_fp8_quant_large(seed: int) -> None:
seed_everything(seed)
num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
hidden_size = 1152 # Smallest hidden_size to reproduce the error
dtype = torch.bfloat16
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
ref_out, scale = ref_dynamic_per_tensor_fp8_quant(x)
ops_out, _ = ops.scaled_fp8_quant(x, scale)
# Minimize memory footprint in this test by freeing x and upconverting
# the outputs in place. (torch.allclose does not support fp8)
del x
ref_out = ref_out.to(dtype=dtype)
ops_out = ops_out.to(dtype=dtype)
torch.testing.assert_close(ref_out, ops_out)