2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
2024-12-26 02:02:58 -08:00
|
|
|
from typing import Dict, List, Set, Tuple
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from vllm.sampling_params import SamplingParams
|
|
|
|
from vllm.utils import is_pin_memory_available, make_tensor_with_pad
|
|
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
|
|
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
|
|
|
|
|
|
|
|
VOCAB_SIZE = 1024
|
|
|
|
NUM_OUTPUT_TOKENS = 20
|
|
|
|
MAX_PROMPT_SIZE = 100
|
|
|
|
CUDA_DEVICES = [
|
|
|
|
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
|
|
|
|
]
|
|
|
|
MAX_NUM_PROMPT_TOKENS = 64
|
|
|
|
|
|
|
|
|
|
|
|
def _remove_requests(
|
|
|
|
input_batch: InputBatch, batch_size: int,
|
|
|
|
reqs: List[CachedRequestState]) -> Tuple[Set[str], List[int]]:
|
|
|
|
"""
|
|
|
|
Remove some requests randomly from the batch and returns a Tuple
|
|
|
|
of 1) set of request removed 2) indices of the requests removed
|
|
|
|
ordered in descending order
|
|
|
|
"""
|
|
|
|
|
|
|
|
num_reqs_to_remove = np.random.randint(0, batch_size)
|
|
|
|
req_indices_to_remove: Set[int] = set()
|
|
|
|
for _ in range(num_reqs_to_remove):
|
|
|
|
req_index_to_remove = np.random.randint(0, batch_size)
|
|
|
|
req_indices_to_remove.add(req_index_to_remove)
|
|
|
|
|
|
|
|
req_indices_to_remove_list = list(req_indices_to_remove)
|
|
|
|
req_indices_to_remove_list.sort(reverse=True)
|
|
|
|
req_ids_to_remove: Set[str] = set()
|
|
|
|
for index in req_indices_to_remove:
|
|
|
|
input_batch.remove_request(reqs[index].req_id)
|
|
|
|
req_ids_to_remove.add(reqs[index].req_id)
|
|
|
|
return (req_ids_to_remove, req_indices_to_remove_list)
|
|
|
|
|
|
|
|
|
|
|
|
def _construct_expected_sampling_metadata(
|
|
|
|
reqs: List[CachedRequestState], req_ids_retained: Set[int],
|
|
|
|
req_id_index_in_input_batch: Dict[str, int],
|
|
|
|
device: torch.device) -> SamplingMetadata:
|
|
|
|
"""
|
|
|
|
Constructs and returns the expected SamplingMetadata for this
|
|
|
|
batch.
|
|
|
|
"""
|
|
|
|
num_reqs = len(req_ids_retained)
|
|
|
|
output_token_ids: List[List[int]] = [list() for _ in range(num_reqs)]
|
|
|
|
prompt_token_ids: List[List[int]] = [list() for _ in range(num_reqs)]
|
|
|
|
presence_penalties = [0.0 for _ in range(num_reqs)]
|
|
|
|
frequency_penalties = [0.0 for _ in range(num_reqs)]
|
|
|
|
repetition_penalties = [1.0 for _ in range(num_reqs)]
|
|
|
|
top_k = [0 for _ in range(num_reqs)]
|
|
|
|
top_p = [0.0 for _ in range(num_reqs)]
|
|
|
|
temperature = [0.0 for _ in range(num_reqs)]
|
|
|
|
stop_token_ids: List[Set[int]] = [set() for _ in range(num_reqs)]
|
|
|
|
min_tokens = [0 for _ in range(num_reqs)]
|
|
|
|
for req in reqs:
|
|
|
|
if req.req_id not in req_ids_retained:
|
|
|
|
continue
|
|
|
|
index_in_input_batch = req_id_index_in_input_batch[req.req_id]
|
|
|
|
output_token_ids[index_in_input_batch] = req.output_token_ids
|
|
|
|
prompt_token_ids[index_in_input_batch] = req.prompt_token_ids
|
|
|
|
presence_penalties[
|
|
|
|
index_in_input_batch] = req.sampling_params.presence_penalty
|
|
|
|
frequency_penalties[
|
|
|
|
index_in_input_batch] = req.sampling_params.frequency_penalty
|
|
|
|
repetition_penalties[
|
|
|
|
index_in_input_batch] = req.sampling_params.repetition_penalty
|
|
|
|
top_k[index_in_input_batch] = req.sampling_params.top_k
|
|
|
|
top_p[index_in_input_batch] = req.sampling_params.top_p
|
|
|
|
temperature[index_in_input_batch] = req.sampling_params.temperature
|
|
|
|
stop_token_ids[
|
|
|
|
index_in_input_batch] = req.sampling_params.all_stop_token_ids
|
|
|
|
min_tokens[index_in_input_batch] = req.sampling_params.min_tokens
|
|
|
|
|
|
|
|
|
|
|
|
return SamplingMetadata(
|
|
|
|
temperature=torch.tensor(temperature, dtype=torch.float, device=device),
|
|
|
|
all_greedy=False,
|
|
|
|
all_random=True,
|
|
|
|
top_p=torch.tensor(top_p, dtype=torch.float, device=device),
|
|
|
|
top_k=torch.tensor(top_k, dtype=torch.int, device=device),
|
|
|
|
no_top_p=all(x == 1.0 for x in top_p),
|
|
|
|
no_top_k=all(x == 0 for x in top_k),
|
|
|
|
generators={},
|
|
|
|
max_num_logprobs=0,
|
|
|
|
prompt_token_ids= make_tensor_with_pad(
|
|
|
|
prompt_token_ids,
|
|
|
|
pad=VOCAB_SIZE,
|
|
|
|
device=torch.device(device),
|
|
|
|
dtype=torch.int64,
|
|
|
|
),
|
|
|
|
frequency_penalties=torch.tensor(
|
|
|
|
frequency_penalties, dtype=torch.float,
|
|
|
|
device=device),
|
|
|
|
presence_penalties=torch.tensor(
|
|
|
|
presence_penalties, dtype=torch.float,
|
|
|
|
device=device),
|
|
|
|
repetition_penalties=torch.tensor(
|
|
|
|
repetition_penalties, dtype=torch.float,
|
|
|
|
device=device),
|
|
|
|
output_token_ids=output_token_ids,
|
|
|
|
min_tokens=min_tokens,
|
|
|
|
stop_token_ids=stop_token_ids,
|
|
|
|
no_penalties=(all(x ==0 for x in presence_penalties) and \
|
|
|
|
all(x ==0 for x in frequency_penalties) and \
|
|
|
|
all(x ==1 for x in repetition_penalties))
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_sampling_params():
|
|
|
|
return SamplingParams(top_k=np.random.randint(1, 10),
|
|
|
|
top_p=np.random.uniform(0.0, 1.0),
|
|
|
|
presence_penalty=np.random.uniform(-2.0, 2.0),
|
|
|
|
repetition_penalty=np.random.uniform(0.0, 2.0),
|
|
|
|
frequency_penalty=np.random.uniform(-2.0, 2.0),
|
|
|
|
min_tokens=np.random.randint(1, 10),
|
|
|
|
stop_token_ids=[
|
|
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
|
|
for _ in range(np.random.randint(10))
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
|
|
def _construct_cached_request_state(req_id_suffix: int):
|
|
|
|
prompt_token_ids = [
|
|
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
|
|
for _ in range(np.random.randint(0, MAX_PROMPT_SIZE))
|
|
|
|
]
|
|
|
|
output_token_ids = [
|
|
|
|
np.random.randint(0, VOCAB_SIZE)
|
|
|
|
for _ in range(np.random.randint(0, NUM_OUTPUT_TOKENS))
|
|
|
|
]
|
|
|
|
return CachedRequestState(req_id=f"req_id_{req_id_suffix}",
|
|
|
|
prompt_token_ids=prompt_token_ids,
|
|
|
|
prompt=None,
|
|
|
|
sampling_params=_create_sampling_params(),
|
|
|
|
mm_inputs=[],
|
|
|
|
mm_positions=[],
|
|
|
|
block_ids=[],
|
|
|
|
generator=None,
|
|
|
|
num_computed_tokens=len(output_token_ids),
|
|
|
|
output_token_ids=output_token_ids)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
|
|
@pytest.mark.parametrize("batch_size", [1, 2, 32, 64])
|
|
|
|
def test_sampling_metadata_in_input_batch(device: str, batch_size: int):
|
|
|
|
"""
|
|
|
|
Tests the logic for managing sampling metadata in the InputBatch.
|
|
|
|
|
|
|
|
This test involves adding a set of requests to the InputBatch,
|
|
|
|
followed by removing a subset of them. Afterward, the batch is compacted,
|
|
|
|
and the `make_sampling_metadata` method is invoked on the batch. The
|
|
|
|
output of `make_sampling_metadata` is then compared against the expected
|
|
|
|
results to ensure correctness.
|
|
|
|
"""
|
|
|
|
input_batch: InputBatch = InputBatch(max_num_reqs=batch_size,
|
|
|
|
max_model_len=1024,
|
|
|
|
max_num_blocks_per_req=10,
|
|
|
|
device=torch.device(device),
|
|
|
|
pin_memory=is_pin_memory_available(),
|
|
|
|
vocab_size=1024)
|
|
|
|
reqs: List[CachedRequestState] = []
|
|
|
|
req_id_reqs = {}
|
|
|
|
req_id_output_token_ids = {}
|
|
|
|
# Add requests
|
|
|
|
for req_index in range(batch_size):
|
|
|
|
req: CachedRequestState = _construct_cached_request_state(req_index)
|
|
|
|
input_batch.add_request(req, req_index)
|
|
|
|
reqs.append(req)
|
|
|
|
req_id_reqs[req.req_id] = req
|
|
|
|
req_id_output_token_ids[req.req_id] = req.output_token_ids
|
|
|
|
|
|
|
|
# Remove some requests
|
|
|
|
req_ids_to_remove, req_indices_to_remove = _remove_requests(
|
|
|
|
input_batch, batch_size, reqs)
|
|
|
|
req_ids_retained = set(req_id_reqs.keys()) - req_ids_to_remove
|
|
|
|
|
|
|
|
# Compact the input batch
|
|
|
|
input_batch.condense(req_indices_to_remove)
|
|
|
|
|
|
|
|
# Generate the sampling metadata
|
|
|
|
sampling_metadata = input_batch.make_sampling_metadata(
|
|
|
|
req_id_output_token_ids, skip_copy=False)
|
|
|
|
|
|
|
|
# Create expected output.
|
|
|
|
expected_sampling_metadata = _construct_expected_sampling_metadata(
|
|
|
|
reqs,
|
|
|
|
req_ids_retained,
|
|
|
|
input_batch.req_id_to_index,
|
|
|
|
device=torch.device(device))
|
|
|
|
|
|
|
|
# Assert the actual and expected output.
|
|
|
|
assert torch.allclose(expected_sampling_metadata.temperature,
|
|
|
|
sampling_metadata.temperature)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.top_p,
|
|
|
|
sampling_metadata.top_p)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.top_k,
|
|
|
|
sampling_metadata.top_k)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.frequency_penalties,
|
|
|
|
sampling_metadata.frequency_penalties)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.presence_penalties,
|
|
|
|
sampling_metadata.presence_penalties)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.repetition_penalties,
|
|
|
|
sampling_metadata.repetition_penalties)
|
|
|
|
assert torch.allclose(expected_sampling_metadata.prompt_token_ids,
|
|
|
|
sampling_metadata.prompt_token_ids)
|
|
|
|
assert (expected_sampling_metadata.output_token_ids ==
|
|
|
|
sampling_metadata.output_token_ids)
|
|
|
|
assert (
|
|
|
|
expected_sampling_metadata.min_tokens == sampling_metadata.min_tokens)
|
|
|
|
assert (expected_sampling_metadata.stop_token_ids ==
|
|
|
|
sampling_metadata.stop_token_ids)
|
|
|
|
assert (expected_sampling_metadata.no_penalties ==
|
|
|
|
sampling_metadata.no_penalties)
|
|
|
|
assert (expected_sampling_metadata.no_top_p == sampling_metadata.no_top_p)
|
|
|
|
assert (expected_sampling_metadata.no_top_k == sampling_metadata.no_top_k)
|