vllm/tests/samplers/test_sampler.py

649 lines
24 KiB
Python
Raw Normal View History

import itertools
import random
2024-03-25 23:59:47 +09:00
from typing import List, Optional, Tuple
from unittest.mock import patch
2023-10-16 12:57:26 -07:00
import pytest
import torch
from transformers import GenerationConfig, GenerationMixin
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.utils import set_random_seed
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.utils import Counter
from vllm.worker.model_runner import ModelRunner
class MockLogitsSampler(Sampler):
def __init__(self, fake_logits: torch.Tensor):
super().__init__()
self.fake_logits = fake_logits
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def _prepare_test(
batch_size: int
) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsSampler, ModelRunner]:
input_tensor = torch.rand((batch_size, 1024), dtype=torch.float16)
fake_logits = torch.full((batch_size, VOCAB_SIZE),
1e-2,
dtype=input_tensor.dtype)
sampler = MockLogitsSampler(fake_logits)
model_runner = ModelRunner(model_config=None,
parallel_config=None,
scheduler_config=None,
device_config=None,
load_config=None,
lora_config=None)
return input_tensor, fake_logits, sampler, model_runner
VOCAB_SIZE = 32000
RANDOM_SEEDS = list(range(128))
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
2024-02-21 11:47:00 -08:00
def _do_sample(
batch_size: int,
input_tensor: torch.Tensor,
sampler: MockLogitsSampler,
model_runner: ModelRunner,
sampling_params: SamplingParams,
):
seq_group_metadata_list = []
prompt_lens = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
2024-02-21 11:47:00 -08:00
sampling_params=sampling_params,
block_tables={0: [1]},
))
prompt_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len())
sampling_metadata = model_runner._prepare_sample(seq_group_metadata_list,
prompt_lens,
subquery_lens=prompt_lens)
return sampler(logits=input_tensor, sampling_metadata=sampling_metadata)
2024-02-21 11:47:00 -08:00
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_all_greedy(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, model_runner = _prepare_test(
batch_size)
sampling_params = SamplingParams(temperature=0)
sampler_output = _do_sample(batch_size, fake_logits, sampler, model_runner,
sampling_params)
expected = torch.argmax(fake_logits, dim=-1)
for i, sequence_output in enumerate(sampler_output):
2023-10-16 12:57:26 -07:00
for nth_output in sequence_output.samples:
assert nth_output.output_token == expected[i].item()
2024-01-14 12:37:58 -08:00
del model_runner
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_all_random(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, model_runner = _prepare_test(
batch_size)
for i in range(batch_size):
fake_logits[i, i] = 1e2
2024-02-21 11:47:00 -08:00
sampling_params = SamplingParams(
temperature=1.0,
n=random.randint(1, 10),
)
sampler_output = _do_sample(batch_size, fake_logits, sampler, model_runner,
sampling_params)
2024-02-21 11:47:00 -08:00
for i, sequence_output in enumerate(sampler_output):
for nth_output in sequence_output.samples:
assert nth_output.output_token == i
del model_runner
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_all_random_seed(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
_, fake_logits, sampler, model_runner = _prepare_test(batch_size)
2024-02-21 11:47:00 -08:00
for i in range(batch_size):
2024-02-21 11:47:00 -08:00
fake_logits[i, i] = 1e2
sampling_params = SamplingParams(
temperature=1.0,
n=random.randint(1, 10),
seed=random.randint(0, 10000),
)
sampler_output = _do_sample(batch_size, fake_logits, sampler, model_runner,
sampling_params)
for i, sequence_output in enumerate(sampler_output):
2023-10-16 12:57:26 -07:00
for nth_output in sequence_output.samples:
assert nth_output.output_token == i
2024-01-14 12:37:58 -08:00
del model_runner
2024-02-21 11:47:00 -08:00
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_all_random_seed_deterministic(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
_, fake_logits, sampler, model_runner = _prepare_test(batch_size)
2024-02-21 11:47:00 -08:00
sampling_params = SamplingParams(
temperature=1.0,
n=random.randint(1, 10),
seed=random.randint(0, 10000),
)
first_sampler_output = _do_sample(batch_size, fake_logits, sampler,
2024-02-21 11:47:00 -08:00
model_runner, sampling_params)
second_sampler_output = _do_sample(batch_size, fake_logits, sampler,
2024-02-21 11:47:00 -08:00
model_runner, sampling_params)
assert first_sampler_output == second_sampler_output
del model_runner
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_all_beam(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
_, fake_logits, sampler, model_runner = _prepare_test(batch_size)
2024-02-21 11:47:00 -08:00
sampling_params = SamplingParams(
temperature=0,
best_of=2,
use_beam_search=True,
)
_do_sample(batch_size, fake_logits, sampler, model_runner, sampling_params)
# no assertion here as I am not sure how to determine whether
# the outputs are expected - in other words, this just tests
# whether there are no exceptions in the sampler
# when handling an all-beam search case.
2024-01-14 12:37:58 -08:00
del model_runner
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_min_tokens_penalty(seed: int, device: str):
seq_id_counter = Counter(start=random.randint(0, 100))
set_random_seed(seed)
torch.set_default_device(device)
def create_sampling_params(min_tokens,
eos_token_id=0,
*,
stop_token_ids: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None):
sampling_params = SamplingParams(
min_tokens=min_tokens,
max_tokens=9999, # keep higher than max of min_tokens
stop_token_ids=stop_token_ids,
# requesting prompt_logprobs changes the structure of `logits`
prompt_logprobs=prompt_logprobs,
)
sampling_params.eos_token_id = eos_token_id
return sampling_params
def create_sequence_data(num_input=3, num_generated=0):
seq_data = SequenceData(
random.choices(range(0, VOCAB_SIZE), k=num_input))
if num_generated > 0:
seq_data.output_token_ids = random.choices(range(0, VOCAB_SIZE),
k=num_generated)
return seq_data
def generate_test_case():
# generate multiple seq groups but limit total batch size
batch_size = random.randint(1, 128)
expected_penalization = []
sequence_metadata_list = []
# 20% chance to generate seq group metadata list with all prompts
is_prompt = random.random() < 0.2
while batch_size > 0:
num_seqs = 1 if is_prompt else random.randint(1, batch_size)
eos_token_id = random.randint(0, VOCAB_SIZE - 1)
min_tokens = random.randint(0, 50)
num_stop_tokens = random.randint(0, 8)
if num_stop_tokens > 0:
stop_token_ids = random.choices(range(0, VOCAB_SIZE - 1),
k=num_stop_tokens)
else:
stop_token_ids = None
sampling_params = create_sampling_params(
min_tokens=min_tokens,
eos_token_id=eos_token_id,
stop_token_ids=stop_token_ids)
seq_data = {}
seq_group_penalization = []
for _ in range(num_seqs):
num_input = random.randint(1, 100)
num_generated = 0 if is_prompt else random.randint(1, 100)
seq_data[next(seq_id_counter)] = create_sequence_data(
num_input=num_input, num_generated=num_generated)
seq_group_penalization.append(num_generated < min_tokens)
expected_penalization.extend(seq_group_penalization)
sequence_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{batch_size}",
is_prompt=is_prompt,
seq_data=seq_data,
sampling_params=sampling_params,
block_tables={},
))
batch_size -= num_seqs
return {
"expected_penalization": expected_penalization,
"seq_group_metadata_list": sequence_metadata_list,
}
# define some explicit test cases for edge case behavior
prompt_without_penalization = {
"expected_penalization": [False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(),
},
sampling_params=create_sampling_params(0),
block_tables={},
),
]
}
prompt_with_penalization = {
"expected_penalization": [True],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(),
},
sampling_params=create_sampling_params(1),
block_tables={},
),
]
}
prompt_with_penalization_and_prompt_logprobs = {
"expected_penalization": [False, False, True],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(num_input=3),
},
sampling_params=create_sampling_params(1, prompt_logprobs=3),
block_tables={},
),
]
}
stop_penalizing_after_min_tokens = {
"expected_penalization": [False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=False,
seq_data={
next(seq_id_counter):
create_sequence_data(num_generated=1),
},
sampling_params=create_sampling_params(1),
block_tables={},
)
]
}
stop_token_ids = [42, 99, 42, 0] # intentional duplication
prompt_combination = {
"expected_penalization": [False, True, False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_2",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(num_input=2),
},
sampling_params=create_sampling_params(1, prompt_logprobs=3),
block_tables={},
),
SequenceGroupMetadata(
request_id="test_3",
is_prompt=True,
seq_data={
next(seq_id_counter): create_sequence_data(),
},
sampling_params=create_sampling_params(
0, stop_token_ids=stop_token_ids),
block_tables={},
)
]
}
stop_token_ids = [1, 999, 37, 37] # intentional duplication
decode_combination = {
"expected_penalization": [True, False, False, True, False],
"seq_group_metadata_list": [
SequenceGroupMetadata(
request_id="test_1",
is_prompt=False,
seq_data={
next(seq_id_counter):
create_sequence_data(num_generated=1),
next(seq_id_counter):
create_sequence_data(num_generated=100),
},
sampling_params=create_sampling_params(
2, stop_token_ids=stop_token_ids),
block_tables={},
),
SequenceGroupMetadata(
request_id="test_2",
is_prompt=False,
seq_data={
next(seq_id_counter):
create_sequence_data(num_generated=20),
next(seq_id_counter):
create_sequence_data(num_generated=1),
next(seq_id_counter):
create_sequence_data(num_generated=10),
},
sampling_params=create_sampling_params(
10, prompt_logprobs=5, stop_token_ids=stop_token_ids),
block_tables={},
),
]
}
if seed == 0:
test_cases = [
prompt_without_penalization,
prompt_with_penalization,
prompt_with_penalization_and_prompt_logprobs,
stop_penalizing_after_min_tokens,
prompt_combination,
decode_combination,
]
else:
test_cases = [generate_test_case()]
def run_test_case(*,
expected_penalization=None,
seq_group_metadata_list=None):
assert expected_penalization, \
"Invalid test case, need expected_penalization"
assert seq_group_metadata_list, \
"Invalid test case, need seq_group_metadata_list"
batch_size = 0
prompt_lens = []
sampling_params_per_row = []
for sgm in seq_group_metadata_list:
sampling_params = sgm.sampling_params
num_rows = len(sgm.seq_data)
if sgm.is_prompt:
# a prompt seq_group has only one sequence
seq_data = next(iter(sgm.seq_data.values()))
prompt_len = seq_data.get_prompt_len()
prompt_lens.append(prompt_len)
if sgm.sampling_params.prompt_logprobs:
# with prompt_logprobs each token in the prompt has a row in
# logits
num_rows = prompt_len
batch_size += num_rows
sampling_params_per_row.extend(
itertools.repeat(sampling_params, num_rows))
assert len(
expected_penalization
) == batch_size, \
("Invalid test case, expected_penalization does not match computed"
"batch size")
_, fake_logits, sampler, model_runner = _prepare_test(batch_size)
sampling_metadata = model_runner._prepare_sample(
seq_group_metadata_list,
prompt_lens=prompt_lens if prompt_lens else None,
subquery_lens=prompt_lens if prompt_lens else None)
# the logits tensor is modified in-place by the sampler
_ = sampler(logits=fake_logits, sampling_metadata=sampling_metadata)
for logits_idx, (should_penalize, sampling_params) in enumerate(
zip(expected_penalization, sampling_params_per_row)):
tokens_to_check = [sampling_params.eos_token_id]
if sampling_params.stop_token_ids:
tokens_to_check.extend(sampling_params.stop_token_ids)
tokens_to_check = set(tokens_to_check)
if should_penalize:
for token_id in tokens_to_check:
assert fake_logits[logits_idx, token_id] == -float(
'inf'
), f"Expected token {token_id} for logits row {logits_idx}"
" to be penalized"
# no other tokens should be set to -inf
assert torch.count_nonzero(
fake_logits[logits_idx, :] == -float('inf')) == len(
tokens_to_check
), f"Expected only {len(tokens_to_check)} to be penalized"
else:
# no tokens should be set to -inf
assert torch.count_nonzero(
fake_logits[logits_idx, :] ==
-float('inf')) == 0, "No tokens should have been penalized"
del model_runner
for test_case in test_cases:
run_test_case(**test_case)
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_mixed(seed: int, device: str):
set_random_seed(seed)
torch.set_default_device(device)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, model_runner = _prepare_test(
batch_size)
seq_group_metadata_list = []
2024-02-21 11:47:00 -08:00
expected_tokens: List[Optional[List[int]]] = []
prompt_lens = []
for i in range(batch_size):
2024-02-21 11:47:00 -08:00
expected: Optional[List[int]] = None
sampling_type = random.randint(0, 3)
if sampling_type == 0:
sampling_params = SamplingParams(temperature=0)
2024-02-21 11:47:00 -08:00
expected = [torch.argmax(fake_logits[i], dim=-1).item()]
elif sampling_type in (1, 2):
n = random.randint(1, 10)
sampling_params = SamplingParams(
temperature=random.random() + 0.1,
top_p=min(random.random() + 0.1, 1),
top_k=random.randint(0, 10) or -1,
n=n,
presence_penalty=random.randint(0, 1),
)
2024-02-21 11:47:00 -08:00
if sampling_type == 2:
sampling_params.seed = random.randint(0, 10000)
else:
for idx in range(n):
fake_logits[i, i + idx] = 1e2
expected = list(range(i, i + n))
else:
sampling_params = SamplingParams(temperature=0,
use_beam_search=True,
best_of=2)
2024-02-21 11:47:00 -08:00
expected_tokens.append(expected)
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=sampling_params,
block_tables={0: [1]},
))
prompt_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len())
2024-02-21 11:47:00 -08:00
def test_sampling(model_runner: ModelRunner):
sampling_metadata = model_runner._prepare_sample(
seq_group_metadata_list, prompt_lens, subquery_lens=prompt_lens)
sampler_output = sampler(logits=fake_logits,
2024-02-21 11:47:00 -08:00
sampling_metadata=sampling_metadata)
for i, (sequence_output, metadata) in enumerate(
zip(sampler_output, seq_group_metadata_list)):
if metadata.sampling_params.use_beam_search:
continue
if (metadata.sampling_params.seed is not None
and expected_tokens[i] is None):
# Record seeded random result to compare with results of
# second invocation
2024-02-21 11:47:00 -08:00
expected_tokens[i] = [
nth_output.output_token
for nth_output in sequence_output.samples
]
continue
for n, nth_output in enumerate(sequence_output.samples):
if (metadata.sampling_params.temperature == 0
or metadata.sampling_params.seed is not None):
2024-02-21 11:47:00 -08:00
# Ensure exact matches for greedy or random with seed
assert nth_output.output_token == expected_tokens[i][n]
else:
# For non-seeded random check that one of the high-logit
# tokens were chosen
2024-02-21 11:47:00 -08:00
assert nth_output.output_token in expected_tokens[i]
# Test batch
test_sampling(model_runner)
# Shuffle the batch and resample
target_index = list(range(batch_size))
for list_to_shuffle in (target_index, seq_group_metadata_list,
expected_tokens, prompt_lens):
random.Random(seed).shuffle(list_to_shuffle)
target_index = torch.tensor(target_index)
input_tensor.data = input_tensor.index_select(0, target_index)
fake_logits.data = fake_logits.index_select(0, target_index)
# This time, results of seeded random samples will be compared with
# the corresponding sample in the pre-shuffled batch
2024-02-21 11:47:00 -08:00
test_sampling(model_runner)
2024-01-14 12:37:58 -08:00
del model_runner
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_sampler_top_k_top_p(seed: int, device: str):
set_random_seed(seed)
batch_size = random.randint(1, 256)
top_k = random.randint(100, 500)
top_p = random.random() * 0.1
vocab_size = 32000
input_tensor = torch.rand((batch_size, 1024),
device=device,
dtype=torch.float16)
fake_logits = torch.normal(0,
5,
size=(batch_size, vocab_size),
device=input_tensor.device,
dtype=input_tensor.dtype)
sampler = MockLogitsSampler(fake_logits)
model_runner = ModelRunner(model_config=None,
parallel_config=None,
scheduler_config=None,
device_config=None,
load_config=None,
lora_config=None)
generation_model = GenerationMixin()
generation_config = GenerationConfig(top_k=top_k,
top_p=top_p,
do_sample=True)
warpers = generation_model._get_logits_warper(generation_config)
assert len(warpers) == 2 # top_p and top_k
seq_group_metadata_list = []
prompt_lens = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=SamplingParams(
temperature=1,
top_k=top_k,
top_p=top_p,
),
block_tables={0: [1]},
))
prompt_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len())
sampling_metadata = model_runner._prepare_sample(seq_group_metadata_list,
prompt_lens,
subquery_lens=prompt_lens)
sample_probs = None
def mock_sample(probs, *args, **kwargs):
nonlocal sample_probs
sample_probs = probs
return [[prob.topk(1, dim=-1).indices.tolist(), [0]] for prob in probs]
with patch("vllm.model_executor.layers.sampler._sample", mock_sample):
sampler(logits=fake_logits, sampling_metadata=sampling_metadata)
hf_probs = warpers(torch.zeros_like(fake_logits), fake_logits.clone())
hf_probs = torch.softmax(hf_probs, dim=-1, dtype=torch.float)
assert torch.allclose(hf_probs, sample_probs, atol=1e-5)
assert torch.equal(hf_probs.eq(0), sample_probs.eq(0))
2024-01-14 12:37:58 -08:00
del model_runner