2023-02-16 07:47:03 +00:00
|
|
|
#include <torch/extension.h>
|
|
|
|
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
|
|
|
2023-02-18 19:22:57 +00:00
|
|
|
#include <algorithm>
|
2023-02-16 07:47:03 +00:00
|
|
|
#include <cassert>
|
|
|
|
#include <map>
|
|
|
|
|
|
|
|
void copy_blocks(
|
|
|
|
torch::Tensor& src,
|
|
|
|
torch::Tensor& dst,
|
|
|
|
const std::map<int64_t, int64_t>& block_mapping) {
|
|
|
|
torch::Device src_device = src.device();
|
|
|
|
torch::Device dst_device = dst.device();
|
|
|
|
cudaMemcpyKind memcpy_type;
|
|
|
|
if (src_device.is_cuda() && dst_device.is_cuda()) {
|
|
|
|
assert(src_device.index() == dst_device.index());
|
|
|
|
memcpy_type = cudaMemcpyDeviceToDevice;
|
|
|
|
} else if (src_device.is_cuda() && dst_device.is_cpu()) {
|
|
|
|
memcpy_type = cudaMemcpyDeviceToHost;
|
|
|
|
} else if (src_device.is_cpu() && dst_device.is_cuda()) {
|
|
|
|
memcpy_type = cudaMemcpyHostToDevice;
|
|
|
|
} else {
|
|
|
|
assert(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *src_ptr = src.data_ptr();
|
|
|
|
void *dst_ptr = dst.data_ptr();
|
|
|
|
|
|
|
|
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
for (const auto& pair : block_mapping) {
|
|
|
|
int64_t src_block_number = pair.first;
|
|
|
|
int64_t dst_block_number = pair.second;
|
|
|
|
int64_t src_offset = src_block_number * block_size_in_bytes;
|
|
|
|
int64_t dst_offset = dst_block_number * block_size_in_bytes;
|
|
|
|
cudaMemcpyAsync(
|
|
|
|
dst_ptr + dst_offset,
|
|
|
|
src_ptr + src_offset,
|
|
|
|
block_size_in_bytes,
|
|
|
|
memcpy_type,
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
}
|
2023-02-18 19:22:57 +00:00
|
|
|
|
|
|
|
template<typename scalar_t>
|
|
|
|
__global__ void reshape_and_cache_kernel(
|
|
|
|
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
|
|
|
|
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
|
|
|
|
scalar_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
|
2023-03-01 15:02:19 -08:00
|
|
|
scalar_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
|
2023-02-18 19:22:57 +00:00
|
|
|
const int* __restrict__ slot_mapping, // [num_tokens]
|
|
|
|
const int num_heads,
|
|
|
|
const int head_size,
|
|
|
|
const int block_size,
|
|
|
|
const int x) {
|
|
|
|
const int token_idx = blockIdx.x;
|
|
|
|
const int slot_idx = slot_mapping[token_idx];
|
|
|
|
const int block_idx = slot_idx / block_size;
|
|
|
|
const int block_offset = slot_idx % block_size;
|
|
|
|
|
|
|
|
const int n = num_heads * head_size;
|
|
|
|
for (int i = threadIdx.x; i < n; i += blockDim.x) {
|
|
|
|
const int src_idx = token_idx * n + i;
|
|
|
|
|
|
|
|
const int head_idx = i / head_size;
|
|
|
|
const int head_offset = i % head_size;
|
|
|
|
const int x_idx = head_offset / x;
|
|
|
|
const int x_offset = head_offset % x;
|
|
|
|
|
|
|
|
const int tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
|
|
|
|
+ head_idx * (head_size / x) * block_size * x
|
|
|
|
+ x_idx * block_size * x
|
|
|
|
+ block_offset * x
|
|
|
|
+ x_offset;
|
2023-03-01 15:02:19 -08:00
|
|
|
const int tgt_value_idx = block_idx * num_heads * head_size * block_size
|
|
|
|
+ head_idx * head_size * block_size
|
|
|
|
+ head_offset * block_size
|
|
|
|
+ block_offset;
|
2023-02-18 19:22:57 +00:00
|
|
|
key_cache[tgt_key_idx] = __ldg(&key[src_idx]);
|
|
|
|
value_cache[tgt_value_idx] = __ldg(&value[src_idx]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void reshape_and_cache(
|
|
|
|
torch::Tensor& key,
|
|
|
|
torch::Tensor& value,
|
|
|
|
torch::Tensor& key_cache,
|
|
|
|
torch::Tensor& value_cache,
|
|
|
|
torch::Tensor& slot_mapping) {
|
|
|
|
int num_tokens = key.size(0);
|
|
|
|
int head_num = key.size(1);
|
|
|
|
int head_size = key.size(2);
|
|
|
|
int block_size = key_cache.size(3);
|
|
|
|
int x = key_cache.size(4);
|
|
|
|
|
|
|
|
dim3 grid(num_tokens);
|
|
|
|
dim3 block(std::min(head_num * head_size, 512));
|
|
|
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
|
|
|
key.scalar_type(),
|
|
|
|
"reshape_and_cache_kernel",
|
|
|
|
[&] {
|
|
|
|
reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
|
|
|
key.data_ptr<scalar_t>(),
|
|
|
|
value.data_ptr<scalar_t>(),
|
|
|
|
key_cache.data_ptr<scalar_t>(),
|
|
|
|
value_cache.data_ptr<scalar_t>(),
|
|
|
|
slot_mapping.data_ptr<int>(),
|
|
|
|
head_num,
|
|
|
|
head_size,
|
|
|
|
block_size,
|
|
|
|
x);
|
|
|
|
});
|
|
|
|
}
|