XPU platform supports tensor-parallel inference/serving and also supports pipeline parallel as a beta feature for online serving. We requires Ray as the distributed runtime backend. For example, a reference execution likes following:
..code-block:: console
$ python -m vllm.entrypoints.openai.api_server \
$ --model=facebook/opt-13b \
$ --dtype=bfloat16 \
$ --device=xpu \
$ --max_model_len=1024 \
$ --distributed-executor-backend=ray \
$ --pipeline-parallel-size=2 \
$ -tp=8
By default, a ray instance will be launched automatically if no existing one is detected in system, with ``num-gpus`` equals to ``parallel_config.world_size``. We recommend properly starting a ray cluster before execution, referring helper `script <https://github.com/vllm-project/vllm/tree/main/examples/run_cluster.sh>`_.