vllm/tests/metrics/test_metrics.py

165 lines
6.0 KiB
Python
Raw Normal View History

import pytest
from prometheus_client import REGISTRY
from vllm import EngineArgs, LLMEngine
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
MODELS = [
"facebook/opt-125m",
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_prompt_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
vllm_model = vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4)
tokenizer = vllm_model.model.get_tokenizer()
prompt_token_counts = [len(tokenizer.encode(p)) for p in example_prompts]
# This test needs at least 2 prompts in a batch of different lengths to
# verify their token count is correct despite padding.
assert len(example_prompts) > 1, "at least 2 prompts are required"
assert prompt_token_counts[0] != prompt_token_counts[1], (
"prompts of different lengths are required")
vllm_prompt_token_count = sum(prompt_token_counts)
_ = vllm_model.generate_greedy(example_prompts, max_tokens)
stat_logger = vllm_model.model.llm_engine.stat_logger
metric_count = stat_logger.metrics.counter_prompt_tokens.labels(
**stat_logger.labels)._value.get()
assert vllm_prompt_token_count == metric_count, (
f"prompt token count: {vllm_prompt_token_count!r}\n"
f"metric: {metric_count!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_generation_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
vllm_model = vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
tokenizer = vllm_model.model.get_tokenizer()
stat_logger = vllm_model.model.llm_engine.stat_logger
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
**stat_logger.labels)._value.get()
vllm_generation_count = 0
for i in range(len(example_prompts)):
vllm_output_ids, vllm_output_str = vllm_outputs[i]
prompt_ids = tokenizer.encode(example_prompts[i])
# vllm_output_ids contains both prompt tokens and generation tokens.
# We're interested only in the count of the generation tokens.
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
assert vllm_generation_count == metric_count, (
f"generation token count: {vllm_generation_count!r}\n"
f"metric: {metric_count!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("disable_log_stats", [True, False])
@pytest.mark.asyncio
async def test_async_engine_log_metrics_regression(
example_prompts,
model: str,
dtype: str,
max_tokens: int,
disable_log_stats: bool,
) -> None:
"""
Regression test ensuring async engine generates metrics
when disable_log_stats=False
(see: https://github.com/vllm-project/vllm/pull/4150#pullrequestreview-2008176678)
"""
engine_args = AsyncEngineArgs(model=model,
dtype=dtype,
disable_log_stats=disable_log_stats)
async_engine = AsyncLLMEngine.from_engine_args(engine_args)
for i, prompt in enumerate(example_prompts):
results = async_engine.generate(
prompt,
SamplingParams(max_tokens=max_tokens),
f"request-id-{i}",
)
# Exhaust the async iterator to make the async engine work
async for _ in results:
pass
assert_metrics(async_engine.engine, disable_log_stats,
len(example_prompts))
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("disable_log_stats", [True, False])
def test_engine_log_metrics_regression(
example_prompts,
model: str,
dtype: str,
max_tokens: int,
disable_log_stats: bool,
) -> None:
engine_args = EngineArgs(model=model,
dtype=dtype,
disable_log_stats=disable_log_stats)
engine = LLMEngine.from_engine_args(engine_args)
for i, prompt in enumerate(example_prompts):
engine.add_request(
f"request-id-{i}",
prompt,
SamplingParams(max_tokens=max_tokens),
)
while engine.has_unfinished_requests():
engine.step()
assert_metrics(engine, disable_log_stats, len(example_prompts))
def assert_metrics(engine: LLMEngine, disable_log_stats: bool,
num_requests: int) -> None:
if disable_log_stats:
with pytest.raises(AttributeError):
_ = engine.stat_logger
else:
assert (engine.stat_logger
is not None), "engine.stat_logger should be set"
# Ensure the count bucket of request-level histogram metrics matches
# the number of requests as a simple sanity check to ensure metrics are
# generated
labels = {'model_name': engine.model_config.model}
request_histogram_metrics = [
"vllm:e2e_request_latency_seconds",
"vllm:request_prompt_tokens",
"vllm:request_generation_tokens",
"vllm:request_params_best_of",
"vllm:request_params_n",
]
for metric_name in request_histogram_metrics:
metric_value = REGISTRY.get_sample_value(f"{metric_name}_count",
labels)
assert (
metric_value == num_requests), "Metrics should be collected"