vllm/tests/v1/worker/test_gpu_input_batch.py

352 lines
14 KiB
Python
Raw Permalink Normal View History

# SPDX-License-Identifier: Apache-2.0
import inspect
from typing import Optional
import numpy as np
import pytest
import torch
from vllm.sampling_params import SamplingParams
from vllm.utils import is_pin_memory_available, make_tensor_with_pad
from vllm.v1.sample.metadata import SamplingMetadata
from vllm.v1.worker.gpu_input_batch import (BlockTable, CachedRequestState,
InputBatch)
VOCAB_SIZE = 1024
NUM_OUTPUT_TOKENS = 20
MAX_PROMPT_SIZE = 100
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
MAX_NUM_PROMPT_TOKENS = 64
def _compare_objs(obj1, obj2):
attrs = inspect.getmembers(obj1, lambda a: not (inspect.isroutine(a)))
attr_names = set([
a[0] for a in attrs
if not (a[0].startswith('__') and a[0].endswith('__'))
])
for attr_name in attr_names:
a = getattr(obj1, attr_name)
b = getattr(obj2, attr_name)
is_same = False
if isinstance(a, torch.Tensor):
if (a.numel() == 0 or b.numel() == 0):
is_same = (a.numel() == 0 and b.numel() == 0)
elif torch.allclose(a, b):
is_same = True
elif isinstance(a, np.ndarray):
if np.allclose(a, b):
is_same = True
elif isinstance(a, (BlockTable, SamplingMetadata)):
_compare_objs(a, b)
is_same = True # if we make it here must be same
elif a == b:
is_same = True
assert is_same, f"Attribute {attr_name} is different"\
f" in {obj1} and {obj2}: {a} != {b}"
def _remove_requests(
input_batch: InputBatch, batch_size: int,
reqs: list[CachedRequestState]) -> tuple[set[str], list[int]]:
"""
Remove some requests randomly from the batch and returns a tuple
of 1) set of request removed 2) indices of the requests removed
ordered in descending order
"""
num_reqs_to_remove = np.random.randint(0, batch_size)
req_indices_to_remove: set[int] = set()
for _ in range(num_reqs_to_remove):
req_index_to_remove = np.random.randint(0, batch_size)
req_indices_to_remove.add(req_index_to_remove)
req_indices_to_remove_list = list(req_indices_to_remove)
req_indices_to_remove_list.sort(reverse=True)
req_ids_to_remove: set[str] = set()
for index in req_indices_to_remove:
input_batch.remove_request(reqs[index].req_id)
req_ids_to_remove.add(reqs[index].req_id)
return req_ids_to_remove, req_indices_to_remove_list
def _construct_expected_sampling_metadata(
reqs: list[CachedRequestState],
req_ids_retained: set[int],
req_id_index_in_input_batch: dict[str, int],
device: torch.device,
) -> SamplingMetadata:
"""
Constructs and returns the expected SamplingMetadata for this
batch.
"""
num_reqs = len(req_ids_retained)
output_token_ids: list[list[int]] = [list() for _ in range(num_reqs)]
prompt_token_ids: list[list[int]] = [list() for _ in range(num_reqs)]
presence_penalties = [0.0 for _ in range(num_reqs)]
frequency_penalties = [0.0 for _ in range(num_reqs)]
repetition_penalties = [1.0 for _ in range(num_reqs)]
top_k = [0 for _ in range(num_reqs)]
top_p = [0.0 for _ in range(num_reqs)]
min_p = [0.0 for _ in range(num_reqs)]
temperature = [0.0 for _ in range(num_reqs)]
min_tokens = {}
logit_bias = [None] * num_reqs
allowed_token_ids_mask = torch.zeros(num_reqs,
VOCAB_SIZE,
dtype=torch.bool,
device=device)
bad_words_token_ids = {}
for req in reqs:
if req.req_id not in req_ids_retained:
continue
index_in_input_batch = req_id_index_in_input_batch[req.req_id]
output_token_ids[index_in_input_batch] = req.output_token_ids
prompt_token_ids[index_in_input_batch] = req.prompt_token_ids
presence_penalties[
index_in_input_batch] = req.sampling_params.presence_penalty
frequency_penalties[index_in_input_batch] = (
req.sampling_params.frequency_penalty)
repetition_penalties[index_in_input_batch] = (
req.sampling_params.repetition_penalty)
top_k[index_in_input_batch] = req.sampling_params.top_k
top_p[index_in_input_batch] = req.sampling_params.top_p
min_p[index_in_input_batch] = req.sampling_params.min_p
temperature[index_in_input_batch] = req.sampling_params.temperature
min_tokens[index_in_input_batch] = (
req.sampling_params.min_tokens,
req.sampling_params.all_stop_token_ids)
logit_bias[index_in_input_batch] = req.sampling_params.logit_bias
if req.sampling_params.allowed_token_ids:
allowed_token_ids_mask[index_in_input_batch][
req.sampling_params.allowed_token_ids] = True
if req.sampling_params.bad_words_token_ids:
bad_words_token_ids[
index_in_input_batch] = req.sampling_params.bad_words_token_ids
return SamplingMetadata(
temperature=torch.tensor(temperature, dtype=torch.float,
device=device),
all_greedy=False,
all_random=True,
top_p=None if all(x == 1.0 for x in top_p) else torch.tensor(
top_p, dtype=torch.float, device=device),
top_k=None if all(x == 0 for x in top_k) else torch.tensor(
top_k, dtype=torch.int, device=device),
min_p=None if all(x == 0.0 for x in min_p) else torch.tensor(
min_p, dtype=torch.float, device=device),
generators={},
max_num_logprobs=0,
prompt_token_ids=make_tensor_with_pad(
prompt_token_ids,
pad=VOCAB_SIZE,
device=torch.device(device),
dtype=torch.int64,
),
frequency_penalties=torch.tensor(frequency_penalties,
dtype=torch.float,
device=device),
presence_penalties=torch.tensor(presence_penalties,
dtype=torch.float,
device=device),
repetition_penalties=torch.tensor(repetition_penalties,
dtype=torch.float,
device=device),
output_token_ids=output_token_ids,
min_tokens=min_tokens,
no_penalties=(all(x == 0 for x in presence_penalties)
and all(x == 0 for x in frequency_penalties)
and all(x == 1 for x in repetition_penalties)),
logit_bias=logit_bias,
allowed_token_ids_mask=allowed_token_ids_mask,
bad_words_token_ids=bad_words_token_ids,
)
def _create_sampling_params():
return SamplingParams(
top_k=np.random.randint(1, 10),
top_p=np.random.uniform(0.0, 1.0),
presence_penalty=np.random.uniform(-2.0, 2.0),
repetition_penalty=np.random.uniform(0.0, 2.0),
frequency_penalty=np.random.uniform(-2.0, 2.0),
min_tokens=np.random.randint(1, 10),
stop_token_ids=[
np.random.randint(0, VOCAB_SIZE)
for _ in range(np.random.randint(10))
],
logit_bias={0: np.random.uniform(-3.0, 3.0)},
)
def _construct_cached_request_state(req_id_suffix: int):
prompt_token_ids = [
np.random.randint(0, VOCAB_SIZE)
for _ in range(np.random.randint(0, MAX_PROMPT_SIZE))
]
output_token_ids = [
np.random.randint(0, VOCAB_SIZE)
for _ in range(np.random.randint(0, NUM_OUTPUT_TOKENS))
]
return CachedRequestState(
req_id=f"req_id_{req_id_suffix}",
prompt_token_ids=prompt_token_ids,
prompt=None,
sampling_params=_create_sampling_params(),
mm_inputs=[],
mm_positions=[],
block_ids=[],
generator=None,
num_computed_tokens=len(output_token_ids),
output_token_ids=output_token_ids,
)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("batch_size", [1, 2, 32, 64])
def test_sampling_metadata_in_input_batch(device: str, batch_size: int):
"""
Tests the logic for managing sampling metadata in the InputBatch.
This test involves adding a set of requests to the InputBatch,
followed by removing a subset of them. Afterward, the batch is compacted,
and the `make_sampling_metadata` method is invoked on the batch. The
output of `make_sampling_metadata` is then compared against the expected
results to ensure correctness.
"""
input_batch: InputBatch = InputBatch(
max_num_reqs=batch_size,
max_model_len=1024,
max_num_blocks_per_req=10,
device=torch.device(device),
pin_memory=is_pin_memory_available(),
vocab_size=1024,
)
reqs: list[CachedRequestState] = []
req_id_reqs = {}
req_id_output_token_ids = {}
# Add requests
for req_index in range(batch_size):
req: CachedRequestState = _construct_cached_request_state(req_index)
input_batch.add_request(req, req_index)
reqs.append(req)
req_id_reqs[req.req_id] = req
req_id_output_token_ids[req.req_id] = req.output_token_ids
# Remove some requests
req_ids_to_remove, req_indices_to_remove = _remove_requests(
input_batch, batch_size, reqs)
req_ids_retained = set(req_id_reqs.keys()) - req_ids_to_remove
# Compact the input batch
input_batch.condense(req_indices_to_remove)
# Generate the sampling metadata
sampling_metadata = input_batch._make_sampling_metadata()
# Create expected output.
expected_sampling_metadata = _construct_expected_sampling_metadata(
reqs,
req_ids_retained,
input_batch.req_id_to_index,
device=torch.device(device))
def same(t1: Optional[torch.Tensor], t2: Optional[torch.Tensor]) -> bool:
return (t1 is None
and t2 is None) or (t1 is not None and t2 is not None
and torch.allclose(t1, t2))
# Assert the actual and expected output.
assert torch.allclose(expected_sampling_metadata.temperature,
sampling_metadata.temperature)
assert same(expected_sampling_metadata.top_p, sampling_metadata.top_p)
assert same(expected_sampling_metadata.top_k, sampling_metadata.top_k)
assert torch.allclose(
expected_sampling_metadata.frequency_penalties,
sampling_metadata.frequency_penalties,
)
assert torch.allclose(
expected_sampling_metadata.presence_penalties,
sampling_metadata.presence_penalties,
)
assert torch.allclose(
expected_sampling_metadata.repetition_penalties,
sampling_metadata.repetition_penalties,
)
assert torch.allclose(expected_sampling_metadata.prompt_token_ids,
sampling_metadata.prompt_token_ids)
assert (expected_sampling_metadata.output_token_ids ==
sampling_metadata.output_token_ids)
assert expected_sampling_metadata.min_tokens == sampling_metadata.min_tokens
assert expected_sampling_metadata.no_penalties == \
sampling_metadata.no_penalties
assert expected_sampling_metadata.logit_bias == sampling_metadata.logit_bias
if sampling_metadata.allowed_token_ids_mask:
assert torch.allclose(
expected_sampling_metadata.allowed_token_ids_mask,
sampling_metadata.allowed_token_ids_mask)
assert expected_sampling_metadata.bad_words_token_ids == \
sampling_metadata.bad_words_token_ids
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("batch_size", [32])
@pytest.mark.parametrize("swap_list", [((0, 1), )])
def test_swap_states_in_input_batch(device: str, batch_size: int,
swap_list: list):
"""
Tests the logic for managing sampling metadata in the InputBatch.
This test involves adding a set of requests to the InputBatch,
followed by removing a subset of them. Afterward, the batch is compacted,
and the `make_sampling_metadata` method is invoked on the batch. The
output of `make_sampling_metadata` is then compared against the expected
results to ensure correctness.
"""
input_batch: InputBatch = InputBatch(
max_num_reqs=batch_size,
max_model_len=1024,
max_num_blocks_per_req=10,
device=torch.device(device),
pin_memory=is_pin_memory_available(),
vocab_size=1024,
)
ref_input_batch: InputBatch = InputBatch(
max_num_reqs=batch_size,
max_model_len=1024,
max_num_blocks_per_req=10,
device=torch.device(device),
pin_memory=is_pin_memory_available(),
vocab_size=1024,
)
reqs: list[CachedRequestState] = []
req_id_reqs = {}
req_id_output_token_ids = {}
# Add requests
for req_index in range(batch_size):
req: CachedRequestState = _construct_cached_request_state(req_index)
input_batch.add_request(req, req_index)
reqs.append(req)
req_id_reqs[req.req_id] = req
req_id_output_token_ids[req.req_id] = req.output_token_ids
reordered_reqs = reqs.copy()
for swap_pair in swap_list:
reordered_reqs[swap_pair[0]], reordered_reqs[swap_pair[1]] = \
reordered_reqs[swap_pair[1]], reordered_reqs[swap_pair[0]]
input_batch.swap_states(swap_pair[0], swap_pair[1])
for req_index in range(batch_size):
req = reordered_reqs[req_index]
ref_input_batch.add_request(req, req_index)
input_batch.refresh_sampling_metadata()
ref_input_batch.refresh_sampling_metadata()
_compare_objs(input_batch, ref_input_batch)