vllm/tests/v1/tpu/test_perf.py

147 lines
4.5 KiB
Python
Raw Permalink Normal View History

# SPDX-License-Identifier: Apache-2.0
"""A basic performance regression test for TPUs
Run `pytest tests/v1/tpu/test_perf.py`.
"""
from __future__ import annotations
import time
from dataclasses import dataclass
from typing import TYPE_CHECKING
import numpy as np
import pytest
from vllm.platforms import current_platform
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
if TYPE_CHECKING:
from tests.conftest import VllmRunner
@dataclass
class TestParams:
model: str
num_prompts: int
prefix_len: int
decode_len: int
expected_avg_time: float
err_tol: float
TEST_PARAMS = [
# TODO: Cannot run a series of tests because:
# RuntimeError: Bad StatusOr access: UNKNOWN: TPU initialization failed:
# open(/dev/vfio/0): Device or resource busy: Device or resource busy;
# Couldn't open iommu group /dev/vfio/0
# => Investigate
# TestParams(
# model="Qwen/Qwen2.5-1.5B-Instruct",
# num_prompts=1,
# prefix_len=10,
# decode_len=5,
# expected_avg_time=0.03,
# err_tol=0.01,
# ),
# TestParams(
# model="Qwen/Qwen2.5-1.5B-Instruct",
# num_prompts=10,
# prefix_len=100,
# decode_len=50,
# expected_avg_time=0.234,
# err_tol=0.020,
# ),
TestParams(
model="Qwen/Qwen2.5-1.5B-Instruct",
num_prompts=64,
prefix_len=500,
decode_len=50,
# (This is the active CI/CD instance)
# commit id: ccb246776d93ef105904a8ec015b3587240a1183
# tpu: v5lite (vllm CI/CD)
expected_avg_time=1.4,
err_tol=0.30,
# (TODO: There is no v6e in CI/CD currently)
# commit id: ccb246776d93ef105904a8ec015b3587240a1183
# tpu: v6e
# expected_avg_time=1.5,
# err_tol=0.20,
),
]
NUM_WARMUPS = 5
NUM_RUNS = 10
MAX_MODEL_LEN = 1024
MAX_NUM_SEQS = 32
GPU_UTIL = 0.9
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This is a basic performance test for TPU only")
@pytest.mark.parametrize("params", TEST_PARAMS)
def test_perf(
vllm_runner: type[VllmRunner],
monkeypatch: pytest.MonkeyPatch,
params: TestParams,
) -> None:
tokenizer = get_tokenizer(params.model,
tokenizer_mode="auto",
trust_remote_code=True)
prompts = []
for i in range(params.num_prompts):
prefix_token_ids = np.random.randint(0,
tokenizer.vocab_size,
size=params.prefix_len).tolist()
prompt = tokenizer.decode(prefix_token_ids)
prompts.append(prompt)
print(
"-- Running: num_prompts = {} prefix_len = {} decode_len = {}".format(
len(prompts), params.prefix_len, params.decode_len))
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
sampling_params = SamplingParams(max_tokens=params.decode_len,
temperature=1.0,
min_p=0.0)
with vllm_runner(params.model,
max_num_batched_tokens=MAX_MODEL_LEN,
max_model_len=MAX_MODEL_LEN,
max_num_seqs=MAX_NUM_SEQS,
gpu_memory_utilization=GPU_UTIL,
enforce_eager=False,
tensor_parallel_size=1) as vllm_model:
print(" -- Warmup / Compile")
for i in range(NUM_WARMUPS):
_ = vllm_model.generate(prompts, sampling_params)
print(" -- Benchmarking... ")
times = []
for i in range(NUM_RUNS):
start_time = time.time()
_ = vllm_model.generate(prompts, sampling_params)
times.append(time.time() - start_time)
avg_time = sum(times) / len(times)
print(" -- avg_time = {}".format(avg_time))
print(" -- expected_avg_time = {} with err_tol = {}".format(
params.expected_avg_time, params.err_tol))
diff = avg_time - params.expected_avg_time
ok = diff < params.err_tol
if diff < -params.err_tol:
print(" !! WARNING !! Performance has improved by {}, "
"it may be necessary to fine-tune the "
"expected_avg_time = {}".format(
-diff, params.expected_avg_time))
assert ok, " !! ERROR !! Regression detected"