2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2023-11-16 13:11:41 -08:00
|
|
|
"""Containing tests that check for regressions in vLLM's behavior.
|
|
|
|
|
|
|
|
It should include tests that are reported by users and making sure they
|
|
|
|
will never happen again.
|
|
|
|
|
|
|
|
"""
|
2024-02-14 22:17:44 -08:00
|
|
|
import gc
|
|
|
|
|
2025-03-15 01:02:20 -04:00
|
|
|
import pytest
|
2024-02-14 22:17:44 -08:00
|
|
|
import torch
|
|
|
|
|
2023-11-16 13:11:41 -08:00
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
|
|
|
2025-03-15 01:02:20 -04:00
|
|
|
@pytest.mark.skip(reason="In V1, we reject tokens > max_seq_len")
|
2023-11-16 13:11:41 -08:00
|
|
|
def test_duplicated_ignored_sequence_group():
|
|
|
|
"""https://github.com/vllm-project/vllm/issues/1655"""
|
|
|
|
|
|
|
|
sampling_params = SamplingParams(temperature=0.01,
|
|
|
|
top_p=0.1,
|
|
|
|
max_tokens=256)
|
2025-02-22 19:19:45 -08:00
|
|
|
llm = LLM(model="distilbert/distilgpt2",
|
2023-11-16 13:11:41 -08:00
|
|
|
max_num_batched_tokens=4096,
|
|
|
|
tensor_parallel_size=1)
|
|
|
|
prompts = ["This is a short prompt", "This is a very long prompt " * 1000]
|
|
|
|
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
|
|
|
|
|
|
|
assert len(prompts) == len(outputs)
|
|
|
|
|
|
|
|
|
2024-01-23 22:38:55 -08:00
|
|
|
def test_max_tokens_none():
|
|
|
|
sampling_params = SamplingParams(temperature=0.01,
|
|
|
|
top_p=0.1,
|
|
|
|
max_tokens=None)
|
2025-02-22 19:19:45 -08:00
|
|
|
llm = LLM(model="distilbert/distilgpt2",
|
2024-01-23 22:38:55 -08:00
|
|
|
max_num_batched_tokens=4096,
|
|
|
|
tensor_parallel_size=1)
|
|
|
|
prompts = ["Just say hello!"]
|
|
|
|
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
|
|
|
|
|
|
|
assert len(prompts) == len(outputs)
|
|
|
|
|
|
|
|
|
2024-02-14 22:17:44 -08:00
|
|
|
def test_gc():
|
2025-02-22 19:19:45 -08:00
|
|
|
llm = LLM(model="distilbert/distilgpt2", enforce_eager=True)
|
2024-02-14 22:17:44 -08:00
|
|
|
del llm
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
# The memory allocated for model and KV cache should be released.
|
|
|
|
# The memory allocated for PyTorch and others should be less than 50MB.
|
|
|
|
# Usually, it's around 10MB.
|
|
|
|
allocated = torch.cuda.memory_allocated()
|
|
|
|
assert allocated < 50 * 1024 * 1024
|
|
|
|
|
|
|
|
|
2025-03-17 11:35:57 +08:00
|
|
|
def test_model_from_modelscope(monkeypatch: pytest.MonkeyPatch):
|
2024-06-07 00:28:10 +08:00
|
|
|
# model: https://modelscope.cn/models/qwen/Qwen1.5-0.5B-Chat/summary
|
2025-03-17 11:35:57 +08:00
|
|
|
with monkeypatch.context() as m:
|
|
|
|
m.setenv("VLLM_USE_MODELSCOPE", "True")
|
|
|
|
llm = LLM(model="qwen/Qwen1.5-0.5B-Chat")
|
2024-06-07 00:28:10 +08:00
|
|
|
|
|
|
|
prompts = [
|
|
|
|
"Hello, my name is",
|
|
|
|
"The president of the United States is",
|
|
|
|
"The capital of France is",
|
|
|
|
"The future of AI is",
|
|
|
|
]
|
|
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
|
|
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
assert len(outputs) == 4
|