vllm/tests/quantization/test_compressed_tensors.py

651 lines
22 KiB
Python
Raw Permalink Normal View History

# SPDX-License-Identifier: Apache-2.0
"""Test model set-up and weight loading for llmcompressor-quantized models.
Run `pytest tests/quantization/test_compressed_tensors.py`.
"""
from typing import Optional
import pytest
import torch
from compressed_tensors.quantization import QuantizationType
from tests.models.utils import check_logprobs_close
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
CompressedTensors24, CompressedTensorsLinearMethod,
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
CompressedTensorsWNA16)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
sparse_cutlass_supported)
from vllm.platforms import current_platform
# AITER only supports per-channel-per-channel INT8 gemm
# and per-tensor-per-tensor INT8 GEMM.
# It does not support mix precision MM and mix quantization scheme.
ROCM_AITER_SUPPORTED_INT8_MODEL = [
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2"
]
# TritonScaledMMLinearKernel only supports symmetric quantization.
ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL = [
"nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change",
"nm-testing/tinyllama-oneshot-w8-channel-a8-tensor",
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
"nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2",
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2",
]
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch):
"""
This module relies on V0 internals, so set VLLM_USE_V1=0.
"""
monkeypatch.setenv('VLLM_USE_V1', '0')
@pytest.mark.parametrize(
"model_args",
[
(
"nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change",
"tensor",
QuantizationType.INT,
2560,
True,
),
(
"nm-testing/tinyllama-oneshot-w8-channel-a8-tensor",
"channel",
QuantizationType.INT,
2560,
True,
),
(
"nm-testing/asym-w8w8-int8-static-per-tensor-tiny-llama",
"tensor",
QuantizationType.INT,
2560,
False,
),
],
)
def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args):
model_path, strategy, quant_type, shape_0, is_symmetric = model_args
if current_platform.is_rocm(
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
with vllm_runner(model_path, enforce_eager=True) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
o_proj = layer.self_attn.o_proj
gate_up_proj = layer.mlp.gate_up_proj
down_proj = layer.mlp.down_proj
# assert zp for symmetric and asymmetric cases
def zp_valid(zp: Optional[torch.Tensor]):
if is_symmetric:
return zp is None
return zp is not None and zp.dtype is torch.int32
assert zp_valid(qkv_proj.input_zero_point)
assert zp_valid(o_proj.input_zero_point)
assert zp_valid(gate_up_proj.input_zero_point)
assert zp_valid(down_proj.input_zero_point)
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(o_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(gate_up_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(down_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.scheme.is_static_input_scheme
expected_type = torch.int8
assert qkv_proj.weight.dtype is expected_type
assert o_proj.weight.dtype is expected_type
assert gate_up_proj.weight.dtype is expected_type
if qkv_proj.scheme.strategy == "tensor":
# Make sure it is a channelwise buffer
# After running process_weights_after_loading
assert len(qkv_proj.weight_scale.shape) == 2
assert qkv_proj.weight_scale.shape[0] == shape_0
assert qkv_proj.weight_scale.shape[1] == 1
assert qkv_proj.weight_scale.dtype is torch.float32
assert qkv_proj.input_scale.dtype is torch.float32
llm.apply_model(check_model)
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
assert output
@pytest.mark.parametrize(
"model_path",
[
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Asym",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Sym",
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym",
],
)
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [10])
@pytest.mark.parametrize(
"use_aiter", [True, False] if current_platform.is_rocm() else [False])
def test_compressed_tensors_w8a8_logprobs(
hf_runner,
vllm_runner,
example_prompts,
model_path,
max_tokens,
num_logprobs,
use_aiter,
monkeypatch,
):
if current_platform.is_rocm(
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
if use_aiter:
if model_path not in ROCM_AITER_SUPPORTED_INT8_MODEL:
pytest.skip(
f"Skip model {model_path} as it is not support by aiter.")
# this will enable VLLM_ROCM_USE_AITER_LINEAR
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
dtype = "bfloat16"
2024-12-23 13:33:20 -05:00
# skip language translation prompt for the static per tensor asym model
if (model_path ==
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym"
): # noqa: E501
2024-12-23 13:33:20 -05:00
example_prompts = example_prompts[0:-1]
with hf_runner(model_path, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model_path, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
if current_platform.is_rocm():
torch.cuda.synchronize()
def test_compressed_tensors_no_enforce_eager(vllm_runner):
model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change"
with vllm_runner(model_path) as llm:
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
@pytest.mark.parametrize(
"model_args",
[
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2", "tensor"),
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2-asym", "tensor"),
(
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2",
"channel",
),
(
"nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2-asym",
"channel",
),
],
)
@pytest.mark.parametrize(
"use_aiter", [True, False] if current_platform.is_rocm() else [False])
def test_compressed_tensors_w8a8_dynamic_per_token(
vllm_runner,
model_args,
use_aiter,
monkeypatch,
):
model_path, strategy = model_args
if current_platform.is_rocm(
) and model_path not in ROCM_TRITON_SCALED_MM_SUPPORTED_INT8_MODEL:
pytest.skip(f"Skip model {model_path} as it is not support on ROCm.")
if use_aiter:
if model_path not in ROCM_AITER_SUPPORTED_INT8_MODEL:
pytest.skip(
f"Skip model {model_path} as it is not support by aiter.")
# this will enable VLLM_ROCM_USE_AITER_LINEAR
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
with vllm_runner(model_path, dtype=torch.float16) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
assert not qkv_proj.scheme.is_static_input_scheme
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.weight.dtype is torch.int8
llm.apply_model(check_model)
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
assert output
@pytest.mark.parametrize(
"wNa16_args",
[("nm-testing/tinyllama-oneshot-w4a16-channel-v2", "channel", None, 8,
True, False),
("nm-testing/tinyllama-oneshot-w4a16-group128-v2", "group", 128, 8, True,
False),
("nm-testing/tinyllama-oneshot-w8a16-per-channel", "channel", None, 4,
True, False),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-awq-group128-asym256", "group", 128,
8, False, False),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-W4A16-G128-Asym-Updated-Channel",
"channel", None, 8, False, False),
("nm-testing/TinyLlama-1.1B-Chat-v1.0-W4A16-G128-Asym-Updated-ActOrder",
"group", 128, 8, False, True)],
)
@pytest.mark.skipif(not current_platform.is_cuda(),
reason="The tests are skipped on non-CUDA platform.")
def test_compressed_tensors_wNa16(vllm_runner, wNa16_args):
model, strategy, group, pack_factor, symmetric, has_g_idx = wNa16_args
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsWNA16)
assert qkv_proj.scheme.strategy == strategy
assert qkv_proj.scheme.group_size == (-1
if group is None else group)
assert qkv_proj.scheme.pack_factor == pack_factor
assert qkv_proj.scheme.symmetric == symmetric
assert qkv_proj.scheme.has_g_idx == has_g_idx
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
@pytest.mark.skipif(not current_platform.is_cuda(),
reason="This test is skipped on non-CUDA platform.")
def test_compressed_tensors_w4a16_marlin24(vllm_runner):
model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t"
with vllm_runner(model_path) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Sparse24)
assert qkv_proj.weight_packed.dtype is torch.int32
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
def test_compressed_tensors_fp8(vllm_runner):
model_path = "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
with vllm_runner(model_path) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(
qkv_proj.scheme,
(CompressedTensorsW8A8Fp8, CompressedTensorsW8A16Fp8),
)
assert qkv_proj.input_scale.dtype is torch.float32
if isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8):
assert len(qkv_proj.input_scale.shape) == 0
assert qkv_proj.weight.dtype is current_platform.fp8_dtype()
assert qkv_proj.weight_scale.dtype is torch.float32
assert len(qkv_proj.weight_scale.shape) == 0
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
assert output
@pytest.mark.skipif(not current_platform.is_cuda(),
reason="This test is skipped on non-CUDA platform.")
def test_compressed_tensors_kv_cache(vllm_runner):
model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
with vllm_runner(model_path, kv_cache_dtype="fp8") as llm:
output = llm.generate_greedy("Hello world!", max_tokens=20)
assert output
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.",
)
def _test_2of4_quant_models(qkv_proj,
weight_strategy,
input_strategy,
format="dense"):
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensors24)
assert qkv_proj.scheme.weight_quant.strategy == weight_strategy
assert qkv_proj.scheme.input_quant.strategy == input_strategy
assert qkv_proj.scheme.quantized
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
sparsity_map = qkv_proj.quant_method.quantization_config.sparsity_scheme_map # noqa: E501
assert sparsity_map.get("Linear").format == format
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
@pytest.mark.skipif(
not current_platform.is_cuda()
or not current_platform.has_device_capability(90),
reason="Sparse FP8 is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4",
[
(
"nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-2of4-testing",
"channel",
"token",
),
(
"nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-Per-Tensor-testing",
"channel",
"tensor",
),
(
"nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-testing",
"tensor",
"tensor",
),
(
"nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-IA-Per-Tensor-Weight-testing",
"tensor",
"token",
),
],
)
def test_compressed_tensors_2of4_quant_fp8(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.float8_e4m3fn
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(
not current_platform.is_cuda()
or not current_platform.has_device_capability(90),
reason="Sparse FP8 is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4",
[
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM",
"channel",
"token",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-chnl_wts_tensor_act_fp8-BitM",
"channel",
"tensor",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-tensor_wts_per_tok_dyn_act_fp8-BitM",
"tensor",
"token",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-tensor_wts_tensor_act_fp8-BitM",
"tensor",
"tensor",
),
],
)
def test_compressed_tensors_2of4_quant_fp8_compressed(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.float8_e4m3fn
_test_2of4_quant_models(
qkv_proj,
weight_strategy,
input_strategy,
format="sparse-24-bitmask",
)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="cutlass is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4",
[
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_int8-BitM",
"channel",
"token",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-chnl_wts_tensor_act_int8-BitM",
"channel",
"tensor",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-tensor_wts_per_tok_dyn_act_int8-BitM",
"tensor",
"token",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-pruned.2of4-tensor_wts_tensor_act_int8-BitM",
"tensor",
"tensor",
),
],
)
def test_compressed_tensors_2of4_quant_int8_compressed(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.int8
_test_2of4_quant_models(
qkv_proj,
weight_strategy,
input_strategy,
format="sparse-24-bitmask",
)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Sparse FP8 is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4",
[
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Channel-Weight-testing",
"channel",
"token",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Static-testing",
"tensor",
"tensor",
),
(
"nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Tensor-Weight-testing",
"tensor",
"token",
),
],
)
def test_compressed_tensors_2of4_quant_int8(vllm_runner, args_2of4):
model, weight_strategy, input_strategy = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert qkv_proj.scheme.weights_dtype == torch.int8
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="2of4 Sparse is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4",
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-2of4-Sparse-Dense-Compressor")],
)
def test_compressed_tensors_2of4_sparse(vllm_runner, args_2of4):
model = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensors24)
assert qkv_proj.scheme.weight_quant is None
assert qkv_proj.scheme.input_quant is None
assert not qkv_proj.scheme.quantized
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
sparsity_map = (
qkv_proj.quant_method.quantization_config.sparsity_scheme_map
) # noqa: E501
assert sparsity_map.get("Linear").format == "dense"
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output
@pytest.mark.skipif(
not sparse_cutlass_supported(),
reason="Cutlass is not yet supported on this GPU type.",
)
@pytest.mark.parametrize(
"args_2of4", [("nm-testing/llama2.c-stories42M-pruned2.4-compressed")])
def test_compressed_tensors_2of4_sparse_compressed(vllm_runner, args_2of4):
model = args_2of4
with vllm_runner(model) as llm:
def check_model(model):
layer = model.model.layers[0]
qkv_proj = layer.self_attn.qkv_proj
assert isinstance(qkv_proj.quant_method,
CompressedTensorsLinearMethod)
assert isinstance(qkv_proj.scheme, CompressedTensors24)
assert qkv_proj.scheme.weight_quant is None
assert qkv_proj.scheme.input_quant is None
assert not qkv_proj.scheme.quantized
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
sparsity_map = (
qkv_proj.quant_method.quantization_config.sparsity_scheme_map
) # noqa: E501
assert sparsity_map.get("Linear").format == "sparse-24-bitmask"
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
llm.apply_model(check_model)
output = llm.generate_greedy("Hello my name is", max_tokens=20)
print(output)
assert output