vllm/tests/kernels/test_awq.py

47 lines
1.9 KiB
Python
Raw Permalink Normal View History

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops # noqa: F401
@pytest.mark.skipif(not hasattr(torch.ops._C, "awq_dequantize"),
reason="AWQ is not supported on this GPU type.")
def test_awq_dequantize_opcheck(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_USE_TRITON_AWQ", "0")
qweight = torch.randint(-2000000000,
2000000000, (8192, 256),
device='cuda',
dtype=torch.int32)
scales = torch.rand((64, 2048), device='cuda', dtype=torch.float16)
zeros = torch.empty((64, 256), device='cuda', dtype=torch.int32)
split_k_iters = 0
thx = 0
thy = 0
opcheck(torch.ops._C.awq_dequantize,
(qweight, scales, zeros, split_k_iters, thx, thy))
@pytest.mark.skip(reason="Not working; needs investigation.")
@pytest.mark.skipif(not hasattr(torch.ops._C, "awq_gemm"),
reason="AWQ is not supported on this GPU type.")
def test_awq_gemm_opcheck(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_USE_TRITON_AWQ", "0")
input = torch.rand((2, 8192), device='cuda', dtype=torch.float16)
qweight = torch.randint(-2000000000,
2000000000, (8192, 256),
device='cuda',
dtype=torch.int32)
scales = torch.randint(-2000000000,
2000000000, (64, 256),
device='cuda',
dtype=torch.int32)
qzeros = torch.empty((64, 2048), device='cuda', dtype=torch.float16)
split_k_iters = 8
opcheck(torch.ops._C.awq_gemm,
(input, qweight, qzeros, scales, split_k_iters))