vllm/docs/source/deployment/integrations/production-stack.md

155 lines
5.4 KiB
Markdown
Raw Permalink Normal View History

(deployment-production-stack)=
# Production stack
Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models. This guide walks you through deploying vLLM using the [vLLM production stack](https://github.com/vllm-project/production-stack). Born out of a Berkeley-UChicago collaboration, [vLLM production stack](https://github.com/vllm-project/production-stack) is an officially released, production-optimized codebase under the [vLLM project](https://github.com/vllm-project), designed for LLM deployment with:
* **Upstream vLLM compatibility** It wraps around upstream vLLM without modifying its code.
* **Ease of use** Simplified deployment via Helm charts and observability through Grafana dashboards.
* **High performance** Optimized for LLM workloads with features like multi-model support, model-aware and prefix-aware routing, fast vLLM bootstrapping, and KV cache offloading with [LMCache](https://github.com/LMCache/LMCache), among others.
If you are new to Kubernetes, don't worry: in the vLLM production stack [repo](https://github.com/vllm-project/production-stack), we provide a step-by-step [guide](https://github.com/vllm-project/production-stack/blob/main/tutorials/00-install-kubernetes-env.md) and a [short video](https://www.youtube.com/watch?v=EsTJbQtzj0g) to set up everything and get started in **4 minutes**!
## Pre-requisite
Ensure that you have a running Kubernetes environment with GPU (you can follow [this tutorial](https://github.com/vllm-project/production-stack/blob/main/tutorials/00-install-kubernetes-env.md) to install a Kubernetes environment on a bare-medal GPU machine).
## Deployment using vLLM production stack
The standard vLLM production stack is installed using a Helm chart. You can run this [bash script](https://github.com/vllm-project/production-stack/blob/main/utils/install-helm.sh) to install Helm on your GPU server.
To install the vLLM production stack, run the following commands on your desktop:
```bash
sudo helm repo add vllm https://vllm-project.github.io/production-stack
sudo helm install vllm vllm/vllm-stack -f tutorials/assets/values-01-minimal-example.yaml
```
This will instantiate a vLLM-production-stack-based deployment named `vllm` that runs a small LLM (Facebook opt-125M model).
### Validate Installation
Monitor the deployment status using:
```bash
sudo kubectl get pods
```
And you will see that pods for the `vllm` deployment will transit to `Running` state.
```text
NAME READY STATUS RESTARTS AGE
vllm-deployment-router-859d8fb668-2x2b7 1/1 Running 0 2m38s
vllm-opt125m-deployment-vllm-84dfc9bd7-vb9bs 1/1 Running 0 2m38s
```
**NOTE**: It may take some time for the containers to download the Docker images and LLM weights.
### Send a Query to the Stack
Forward the `vllm-router-service` port to the host machine:
```bash
sudo kubectl port-forward svc/vllm-router-service 30080:80
```
And then you can send out a query to the OpenAI-compatible API to check the available models:
```bash
curl -o- http://localhost:30080/models
```
Expected output:
```json
{
"object": "list",
"data": [
{
"id": "facebook/opt-125m",
"object": "model",
"created": 1737428424,
"owned_by": "vllm",
"root": null
}
]
}
```
To send an actual chatting request, you can issue a curl request to the OpenAI `/completion` endpoint:
```bash
curl -X POST http://localhost:30080/completions \
-H "Content-Type: application/json" \
-d '{
"model": "facebook/opt-125m",
"prompt": "Once upon a time,",
"max_tokens": 10
}'
```
Expected output:
```json
{
"id": "completion-id",
"object": "text_completion",
"created": 1737428424,
"model": "facebook/opt-125m",
"choices": [
{
"text": " there was a brave knight who...",
"index": 0,
"finish_reason": "length"
}
]
}
```
### Uninstall
To remove the deployment, run:
```bash
sudo helm uninstall vllm
```
------
### (Advanced) Configuring vLLM production stack
The core vLLM production stack configuration is managed with YAML. Here is the example configuration used in the installation above:
```yaml
servingEngineSpec:
runtimeClassName: ""
modelSpec:
- name: "opt125m"
repository: "vllm/vllm-openai"
tag: "latest"
modelURL: "facebook/opt-125m"
replicaCount: 1
requestCPU: 6
requestMemory: "16Gi"
requestGPU: 1
pvcStorage: "10Gi"
```
In this YAML configuration:
* **`modelSpec`** includes:
* `name`: A nickname that you prefer to call the model.
* `repository`: Docker repository of vLLM.
* `tag`: Docker image tag.
* `modelURL`: The LLM model that you want to use.
* **`replicaCount`**: Number of replicas.
* **`requestCPU` and `requestMemory`**: Specifies the CPU and memory resource requests for the pod.
* **`requestGPU`**: Specifies the number of GPUs required.
* **`pvcStorage`**: Allocates persistent storage for the model.
**NOTE:** If you intend to set up two pods, please refer to this [YAML file](https://github.com/vllm-project/production-stack/blob/main/tutorials/assets/values-01-2pods-minimal-example.yaml).
**NOTE:** vLLM production stack offers many more features (*e.g.* CPU offloading and a wide range of routing algorithms). Please check out these [examples and tutorials](https://github.com/vllm-project/production-stack/tree/main/tutorials) and our [repo](https://github.com/vllm-project/production-stack) for more details!