2025-03-10 00:23:11 -07:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
"""
|
|
|
|
This module defines a framework for sampling benchmark requests from various
|
|
|
|
datasets. Each dataset subclass of BenchmarkDataset must implement sample
|
|
|
|
generation. Supported dataset types include:
|
|
|
|
- ShareGPT
|
|
|
|
- Random (synthetic)
|
|
|
|
- Sonnet
|
|
|
|
- BurstGPT
|
|
|
|
- HuggingFace
|
|
|
|
- VisionArena
|
|
|
|
|
|
|
|
TODO: Implement CustomDataset to parse a JSON file and convert its contents into
|
|
|
|
SampleRequest instances, similar to the approach used in ShareGPT.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import base64
|
|
|
|
import io
|
|
|
|
import json
|
2025-03-19 21:32:58 -07:00
|
|
|
import logging
|
2025-03-10 00:23:11 -07:00
|
|
|
import random
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from collections.abc import Mapping
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from functools import cache
|
2025-03-31 00:38:58 -07:00
|
|
|
from io import BytesIO
|
|
|
|
from typing import Any, Callable, Optional, Union
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from datasets import load_dataset
|
|
|
|
from PIL import Image
|
|
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
|
|
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
from vllm.lora.utils import get_adapter_absolute_path
|
|
|
|
from vllm.multimodal import MultiModalDataDict
|
|
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Data Classes
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class SampleRequest:
|
|
|
|
"""
|
|
|
|
Represents a single inference request for benchmarking.
|
|
|
|
"""
|
|
|
|
|
2025-03-13 21:07:54 -07:00
|
|
|
prompt: Union[str, Any]
|
2025-03-10 00:23:11 -07:00
|
|
|
prompt_len: int
|
|
|
|
expected_output_len: int
|
|
|
|
multi_modal_data: Optional[Union[MultiModalDataDict, dict]] = None
|
|
|
|
lora_request: Optional[LoRARequest] = None
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Benchmark Dataset Base Class
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class BenchmarkDataset(ABC):
|
|
|
|
DEFAULT_SEED = 0
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dataset_path: Optional[str] = None,
|
|
|
|
random_seed: int = DEFAULT_SEED,
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Initialize the BenchmarkDataset with an optional dataset path and random
|
|
|
|
seed. Args:
|
|
|
|
dataset_path (Optional[str]): Path to the dataset. If None, it
|
|
|
|
indicates that a default or random dataset might be used.
|
|
|
|
random_seed (int): Seed value for reproducible shuffling or
|
|
|
|
sampling. Defaults to DEFAULT_SEED.
|
|
|
|
"""
|
|
|
|
self.dataset_path = dataset_path
|
|
|
|
# Set the random seed, ensuring that a None value is replaced with the
|
|
|
|
# default seed.
|
|
|
|
self.random_seed = (random_seed
|
|
|
|
if random_seed is not None else self.DEFAULT_SEED)
|
|
|
|
self.data = None
|
|
|
|
|
2025-03-13 21:07:54 -07:00
|
|
|
def apply_multimodal_chat_transformation(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
mm_content: Optional[MultiModalDataDict] = None) -> list[dict]:
|
|
|
|
"""
|
|
|
|
Transform a prompt and optional multimodal content into a chat format.
|
2025-03-19 21:32:58 -07:00
|
|
|
This method is used for chat models that expect a specific conversation
|
|
|
|
format.
|
2025-03-13 21:07:54 -07:00
|
|
|
"""
|
|
|
|
content = [{"text": prompt, "type": "text"}]
|
|
|
|
if mm_content is not None:
|
|
|
|
content.append(mm_content)
|
|
|
|
return [{"role": "user", "content": content}]
|
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
def load_data(self) -> None:
|
|
|
|
"""
|
|
|
|
Load data from the dataset path into self.data.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
This method must be overridden by subclasses since the method to load
|
|
|
|
data will vary depending on the dataset format and source.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Raises:
|
|
|
|
NotImplementedError: If a subclass does not implement this method.
|
|
|
|
"""
|
|
|
|
# TODO (jenniferzhao): add support for downloading data
|
|
|
|
raise NotImplementedError(
|
|
|
|
"load_data must be implemented in subclasses.")
|
|
|
|
|
|
|
|
def get_random_lora_request(
|
|
|
|
self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
max_loras: Optional[int] = None,
|
|
|
|
lora_path: Optional[str] = None,
|
|
|
|
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
|
|
|
|
"""
|
|
|
|
Optionally select a random LoRA request and return its associated
|
|
|
|
tokenizer.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
This method is used when LoRA parameters are provided. It randomly
|
|
|
|
selects a LoRA based on max_loras and retrieves a cached tokenizer for
|
|
|
|
that LoRA if available. Otherwise, it returns the base tokenizer.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Args:
|
|
|
|
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
|
|
|
|
LoRA is selected. max_loras (Optional[int]): The maximum number of
|
|
|
|
LoRAs available. If None, LoRA is not used. lora_path
|
|
|
|
(Optional[str]): Path to the LoRA parameters on disk. If None, LoRA
|
|
|
|
is not used.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Returns:
|
|
|
|
tuple[Optional[LoRARequest], AnyTokenizer]: A tuple where the first
|
|
|
|
element is a LoRARequest (or None if not applicable) and the second
|
|
|
|
element is the tokenizer associated with the LoRA request (or the
|
|
|
|
base tokenizer).
|
|
|
|
"""
|
|
|
|
if max_loras is None or lora_path is None:
|
|
|
|
return None, tokenizer
|
|
|
|
|
|
|
|
# Generate a random LoRA ID in the range [1, max_loras].
|
|
|
|
lora_id = random.randint(1, max_loras)
|
|
|
|
lora_request = LoRARequest(
|
|
|
|
lora_name=str(lora_id),
|
|
|
|
lora_int_id=lora_id,
|
|
|
|
lora_path=lora_path_on_disk(lora_path),
|
|
|
|
)
|
|
|
|
if lora_id not in lora_tokenizer_cache:
|
|
|
|
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
|
|
|
|
# Return lora_request and the cached tokenizer if available; otherwise,
|
|
|
|
# return the base tokenizer
|
|
|
|
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def sample(self, tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int) -> list[SampleRequest]:
|
|
|
|
"""
|
|
|
|
Abstract method to generate sample requests from the dataset.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Subclasses must override this method to implement dataset-specific logic
|
|
|
|
for generating a list of SampleRequest objects.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Args:
|
|
|
|
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
|
|
|
|
for processing the dataset's text.
|
|
|
|
num_requests (int): The number of sample requests to generate.
|
2025-03-19 21:32:58 -07:00
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
Returns:
|
|
|
|
list[SampleRequest]: A list of sample requests generated from the
|
|
|
|
dataset.
|
|
|
|
"""
|
|
|
|
raise NotImplementedError("sample must be implemented in subclasses.")
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
|
|
|
num_requests: int) -> None:
|
|
|
|
"""
|
|
|
|
Oversamples the list of requests if its size is less than the desired
|
|
|
|
number.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
requests (List[SampleRequest]): The current list of sampled
|
|
|
|
requests. num_requests (int): The target number of requests.
|
|
|
|
"""
|
|
|
|
if len(requests) < num_requests:
|
|
|
|
random.seed(self.random_seed)
|
|
|
|
additional = random.choices(requests,
|
|
|
|
k=num_requests - len(requests))
|
|
|
|
requests.extend(additional)
|
|
|
|
logger.info("Oversampled requests to reach %d total samples.",
|
|
|
|
num_requests)
|
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Utility Functions and Global Caches
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
def is_valid_sequence(
|
|
|
|
prompt_len: int,
|
|
|
|
output_len: int,
|
|
|
|
min_len: int = 4,
|
|
|
|
max_prompt_len: int = 1024,
|
|
|
|
max_total_len: int = 2048,
|
|
|
|
skip_min_output_len_check: bool = False,
|
|
|
|
) -> bool:
|
|
|
|
"""
|
|
|
|
Validate a sequence based on prompt and output lengths.
|
|
|
|
|
|
|
|
Default pruning criteria are copied from the original `sample_hf_requests`
|
|
|
|
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
|
|
|
from `sample_requests` in benchmark_throughput.py.
|
|
|
|
"""
|
|
|
|
# Check for invalid conditions
|
|
|
|
prompt_too_short = prompt_len < min_len
|
|
|
|
output_too_short = (not skip_min_output_len_check) and (output_len
|
|
|
|
< min_len)
|
|
|
|
prompt_too_long = prompt_len > max_prompt_len
|
|
|
|
combined_too_long = (prompt_len + output_len) > max_total_len
|
|
|
|
|
|
|
|
# Return True if none of the invalid conditions are met
|
|
|
|
return not (prompt_too_short or output_too_short or prompt_too_long
|
|
|
|
or combined_too_long)
|
|
|
|
|
|
|
|
|
|
|
|
@cache
|
|
|
|
def lora_path_on_disk(lora_path: str) -> str:
|
|
|
|
return get_adapter_absolute_path(lora_path)
|
|
|
|
|
|
|
|
|
|
|
|
# Global cache for LoRA tokenizers.
|
|
|
|
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
|
|
|
|
|
|
|
|
|
|
|
|
def process_image(image: Any) -> Mapping[str, Any]:
|
|
|
|
"""
|
|
|
|
Process a single image input and return a multimedia content dictionary.
|
|
|
|
|
2025-03-31 00:38:58 -07:00
|
|
|
Supports three input types:
|
2025-03-10 00:23:11 -07:00
|
|
|
|
2025-03-31 00:38:58 -07:00
|
|
|
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
|
|
|
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
|
|
|
|
|
|
|
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
|
|
|
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
|
|
|
a dictionary with the image as a base64 data URL.
|
|
|
|
|
|
|
|
3. String input: - Treats the string as a URL or local file path. -
|
|
|
|
Prepends "file://" if the string doesn't start with "http://" or
|
|
|
|
"file://". - Returns a dictionary with the image URL.
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
Raises:
|
2025-03-31 00:38:58 -07:00
|
|
|
ValueError: If the input is not a supported type.
|
2025-03-10 00:23:11 -07:00
|
|
|
"""
|
2025-03-31 00:38:58 -07:00
|
|
|
if isinstance(image, dict) and 'bytes' in image:
|
|
|
|
image = Image.open(BytesIO(image['bytes']))
|
2025-03-10 00:23:11 -07:00
|
|
|
if isinstance(image, Image.Image):
|
|
|
|
image = image.convert("RGB")
|
|
|
|
with io.BytesIO() as image_data:
|
|
|
|
image.save(image_data, format="JPEG")
|
|
|
|
image_base64 = base64.b64encode(
|
|
|
|
image_data.getvalue()).decode("utf-8")
|
|
|
|
return {
|
|
|
|
"type": "image_url",
|
|
|
|
"image_url": {
|
|
|
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
if isinstance(image, str):
|
|
|
|
image_url = (image if image.startswith(
|
|
|
|
("http://", "file://")) else f"file://{image}")
|
|
|
|
return {"type": "image_url", "image_url": {"url": image_url}}
|
|
|
|
|
2025-03-31 00:38:58 -07:00
|
|
|
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
|
|
|
" or str or dictionary with raw image bytes.")
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Random Dataset Implementation (Synthetic Data)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class RandomDataset(BenchmarkDataset):
|
|
|
|
# Default values copied from benchmark_serving.py for the random dataset.
|
|
|
|
DEFAULT_PREFIX_LEN = 0
|
2025-04-11 06:31:17 +08:00
|
|
|
DEFAULT_RANGE_RATIO = 0.0
|
2025-03-10 00:23:11 -07:00
|
|
|
DEFAULT_INPUT_LEN = 1024
|
|
|
|
DEFAULT_OUTPUT_LEN = 128
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
**kwargs,
|
|
|
|
) -> None:
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
prefix_len: int = DEFAULT_PREFIX_LEN,
|
|
|
|
range_ratio: float = DEFAULT_RANGE_RATIO,
|
|
|
|
input_len: int = DEFAULT_INPUT_LEN,
|
|
|
|
output_len: int = DEFAULT_OUTPUT_LEN,
|
|
|
|
**kwargs,
|
|
|
|
) -> list[SampleRequest]:
|
2025-04-11 06:31:17 +08:00
|
|
|
# Enforce range_ratio < 1
|
|
|
|
assert range_ratio < 1.0, (
|
|
|
|
"random_range_ratio must be < 1.0 to ensure a valid sampling range"
|
|
|
|
)
|
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
vocab_size = tokenizer.vocab_size
|
|
|
|
|
|
|
|
prefix_token_ids = (np.random.randint(
|
|
|
|
0, vocab_size, size=prefix_len).tolist() if prefix_len > 0 else [])
|
|
|
|
|
2025-04-11 06:31:17 +08:00
|
|
|
# New sampling logic: [X * (1 - b), X * (1 + b)]
|
|
|
|
input_low = int(input_len * (1 - range_ratio))
|
|
|
|
input_high = int(input_len * (1 + range_ratio))
|
|
|
|
output_low = int(output_len * (1 - range_ratio))
|
|
|
|
output_high = int(output_len * (1 + range_ratio))
|
|
|
|
|
|
|
|
# Add logging for debugging
|
|
|
|
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
|
|
|
|
logger.info("Sampling output_len from [%s, %s]", output_low,
|
|
|
|
output_high)
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
input_lens = np.random.randint(input_low,
|
2025-04-11 06:31:17 +08:00
|
|
|
input_high + 1,
|
2025-03-10 00:23:11 -07:00
|
|
|
size=num_requests)
|
|
|
|
output_lens = np.random.randint(output_low,
|
2025-04-11 06:31:17 +08:00
|
|
|
output_high + 1,
|
2025-03-10 00:23:11 -07:00
|
|
|
size=num_requests)
|
|
|
|
offsets = np.random.randint(0, vocab_size, size=num_requests)
|
|
|
|
|
|
|
|
requests = []
|
|
|
|
for i in range(num_requests):
|
|
|
|
inner_seq = ((offsets[i] + i + np.arange(input_lens[i])) %
|
|
|
|
vocab_size).tolist()
|
|
|
|
token_sequence = prefix_token_ids + inner_seq
|
|
|
|
prompt = tokenizer.decode(token_sequence)
|
|
|
|
total_input_len = prefix_len + int(input_lens[i])
|
|
|
|
requests.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=total_input_len,
|
|
|
|
expected_output_len=int(output_lens[i]),
|
|
|
|
))
|
|
|
|
return requests
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# ShareGPT Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class ShareGPTDataset(BenchmarkDataset):
|
|
|
|
"""
|
|
|
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
|
|
|
sample requests based on conversation turns.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
self.load_data()
|
|
|
|
|
|
|
|
def load_data(self) -> None:
|
|
|
|
if self.dataset_path is None:
|
|
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
|
|
self.data = json.load(f)
|
|
|
|
# Filter entries with at least two conversation turns.
|
|
|
|
self.data = [
|
|
|
|
entry for entry in self.data
|
|
|
|
if "conversations" in entry and len(entry["conversations"]) >= 2
|
|
|
|
]
|
|
|
|
random.seed(self.random_seed)
|
|
|
|
random.shuffle(self.data)
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
lora_path: Optional[str] = None,
|
|
|
|
max_loras: Optional[int] = None,
|
|
|
|
output_len: Optional[int] = None,
|
|
|
|
enable_multimodal_chat: bool = False,
|
|
|
|
**kwargs,
|
|
|
|
) -> list:
|
2025-03-10 00:23:11 -07:00
|
|
|
samples: list = []
|
|
|
|
for entry in self.data:
|
|
|
|
if len(samples) >= num_requests:
|
|
|
|
break
|
2025-03-19 21:32:58 -07:00
|
|
|
prompt, completion = (
|
|
|
|
entry["conversations"][0]["value"],
|
|
|
|
entry["conversations"][1]["value"],
|
|
|
|
)
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
lora_request, tokenizer = self.get_random_lora_request(
|
|
|
|
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
|
|
|
prompt_ids = tokenizer(prompt).input_ids
|
|
|
|
completion_ids = tokenizer(completion).input_ids
|
|
|
|
prompt_len = len(prompt_ids)
|
|
|
|
new_output_len = (len(completion_ids)
|
|
|
|
if output_len is None else output_len)
|
|
|
|
if not is_valid_sequence(prompt_len,
|
|
|
|
new_output_len,
|
|
|
|
skip_min_output_len_check=output_len
|
|
|
|
is not None):
|
|
|
|
continue
|
2025-03-13 21:07:54 -07:00
|
|
|
if enable_multimodal_chat:
|
|
|
|
prompt = self.apply_multimodal_chat_transformation(
|
|
|
|
prompt, None)
|
2025-03-10 00:23:11 -07:00
|
|
|
samples.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=new_output_len,
|
|
|
|
lora_request=lora_request,
|
|
|
|
))
|
2025-03-19 21:32:58 -07:00
|
|
|
self.maybe_oversample_requests(samples, num_requests)
|
2025-03-10 00:23:11 -07:00
|
|
|
return samples
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Sonnet Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class SonnetDataset(BenchmarkDataset):
|
|
|
|
"""
|
|
|
|
Simplified implementation of the Sonnet dataset. Loads poem lines from a
|
|
|
|
text file and generates sample requests. Default values here copied from
|
|
|
|
`benchmark_serving.py` for the sonnet dataset.
|
|
|
|
"""
|
|
|
|
|
|
|
|
DEFAULT_PREFIX_LEN = 200
|
|
|
|
DEFAULT_INPUT_LEN = 550
|
|
|
|
DEFAULT_OUTPUT_LEN = 150
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
**kwargs,
|
|
|
|
) -> None:
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
self.load_data()
|
|
|
|
|
|
|
|
def load_data(self) -> None:
|
|
|
|
if not self.dataset_path:
|
|
|
|
raise ValueError("dataset_path must be provided.")
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
|
|
self.data = f.readlines()
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
tokenizer,
|
|
|
|
num_requests: int,
|
|
|
|
prefix_len: int = DEFAULT_PREFIX_LEN,
|
|
|
|
input_len: int = DEFAULT_INPUT_LEN,
|
|
|
|
output_len: int = DEFAULT_OUTPUT_LEN,
|
|
|
|
return_prompt_formatted: bool = False,
|
|
|
|
**kwargs,
|
|
|
|
) -> list:
|
2025-03-10 00:23:11 -07:00
|
|
|
# Calculate average token length for a poem line.
|
|
|
|
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
|
|
|
|
avg_len = sum(len(tokens)
|
2025-03-19 21:32:58 -07:00
|
|
|
for tokens in tokenized_lines) / len(tokenized_lines)
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
# Build the base prompt.
|
|
|
|
base_prompt = "Pick as many lines as you can from these poem lines:\n"
|
|
|
|
base_msg = [{"role": "user", "content": base_prompt}]
|
|
|
|
base_fmt = tokenizer.apply_chat_template(base_msg,
|
|
|
|
add_generation_prompt=True,
|
|
|
|
tokenize=False)
|
|
|
|
base_offset = len(tokenizer(base_fmt).input_ids)
|
|
|
|
if input_len <= base_offset:
|
|
|
|
raise ValueError(
|
|
|
|
f"'input_len' must be higher than the base prompt length "
|
|
|
|
f"({base_offset}).")
|
|
|
|
|
|
|
|
# Determine how many poem lines to use.
|
|
|
|
num_input_lines = round((input_len - base_offset) / avg_len)
|
2025-04-09 22:35:07 -07:00
|
|
|
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
|
2025-03-10 00:23:11 -07:00
|
|
|
prefix_lines = self.data[:num_prefix_lines]
|
|
|
|
|
|
|
|
samples = []
|
2025-04-11 03:15:06 +01:00
|
|
|
while len(samples) < num_requests:
|
2025-03-10 00:23:11 -07:00
|
|
|
extra_lines = random.choices(self.data,
|
|
|
|
k=num_input_lines - num_prefix_lines)
|
|
|
|
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
|
|
|
|
msg = [{"role": "user", "content": prompt}]
|
|
|
|
prompt_formatted = tokenizer.apply_chat_template(
|
|
|
|
msg, add_generation_prompt=True, tokenize=False)
|
|
|
|
prompt_len = len(tokenizer(prompt_formatted).input_ids)
|
2025-04-11 03:15:06 +01:00
|
|
|
if prompt_len <= input_len:
|
|
|
|
samples.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt_formatted
|
|
|
|
if return_prompt_formatted else prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
))
|
2025-03-10 00:23:11 -07:00
|
|
|
return samples
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# BurstGPT Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class BurstGPTDataset(BenchmarkDataset):
|
|
|
|
"""
|
|
|
|
Implements the BurstGPT dataset. Loads data from a CSV file and generates
|
|
|
|
sample requests based on synthetic prompt generation. Only rows with Model
|
|
|
|
"GPT-4" and positive response tokens are used.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
self.load_data()
|
|
|
|
|
|
|
|
def load_data(self, ):
|
|
|
|
if self.dataset_path is None:
|
|
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
|
|
|
|
df = pd.read_csv(self.dataset_path)
|
|
|
|
# Filter to keep only GPT-4 rows.
|
|
|
|
gpt4_df = df[df["Model"] == "GPT-4"]
|
|
|
|
# Remove failed requests (where Response tokens is 0 or less).
|
|
|
|
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
|
|
|
|
# Sample the desired number of rows.
|
|
|
|
self.data = gpt4_df
|
|
|
|
|
|
|
|
def _sample_loaded_data(self, num_requests: int) -> list:
|
|
|
|
if num_requests <= len(self.data):
|
|
|
|
data = self.data.sample(n=num_requests,
|
|
|
|
random_state=self.random_seed)
|
|
|
|
else:
|
|
|
|
data = self.data.sample(
|
|
|
|
n=num_requests,
|
|
|
|
random_state=self.random_seed,
|
|
|
|
replace=True,
|
|
|
|
)
|
|
|
|
# Convert the dataframe to a list of lists.
|
|
|
|
return data.values.tolist()
|
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
max_loras: Optional[int] = None,
|
|
|
|
lora_path: Optional[str] = None,
|
|
|
|
**kwargs,
|
|
|
|
) -> list[SampleRequest]:
|
2025-03-10 00:23:11 -07:00
|
|
|
samples = []
|
|
|
|
data = self._sample_loaded_data(num_requests=num_requests)
|
|
|
|
for i in range(num_requests):
|
|
|
|
input_len = int(data[i][2])
|
|
|
|
output_len = int(data[i][3])
|
|
|
|
lora_req, tokenizer = self.get_random_lora_request(
|
|
|
|
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
|
|
|
|
vocab_size = tokenizer.vocab_size
|
|
|
|
# Generate a synthetic prompt: a list of token IDs computed as (i +
|
|
|
|
# j) modulo vocab_size.
|
|
|
|
token_ids = [(i + j) % vocab_size for j in range(input_len)]
|
|
|
|
prompt = tokenizer.decode(token_ids)
|
|
|
|
samples.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=input_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
lora_request=lora_req,
|
|
|
|
))
|
|
|
|
return samples
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
2025-03-31 00:38:58 -07:00
|
|
|
# HuggingFace Dataset Base Implementation
|
2025-03-10 00:23:11 -07:00
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
class HuggingFaceDataset(BenchmarkDataset):
|
2025-03-31 00:38:58 -07:00
|
|
|
"""Base class for datasets hosted on HuggingFace."""
|
|
|
|
|
|
|
|
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
2025-03-31 00:38:58 -07:00
|
|
|
dataset_path: str,
|
2025-03-10 00:23:11 -07:00
|
|
|
dataset_split: str,
|
|
|
|
dataset_subset: Optional[str] = None,
|
|
|
|
**kwargs,
|
|
|
|
) -> None:
|
2025-03-31 00:38:58 -07:00
|
|
|
super().__init__(dataset_path=dataset_path, **kwargs)
|
|
|
|
|
2025-03-10 00:23:11 -07:00
|
|
|
self.dataset_split = dataset_split
|
|
|
|
self.dataset_subset = dataset_subset
|
|
|
|
self.load_data()
|
|
|
|
|
|
|
|
def load_data(self) -> None:
|
2025-03-31 00:38:58 -07:00
|
|
|
"""Load data from HuggingFace datasets."""
|
2025-03-10 00:23:11 -07:00
|
|
|
self.data = load_dataset(
|
|
|
|
self.dataset_path,
|
|
|
|
name=self.dataset_subset,
|
|
|
|
split=self.dataset_split,
|
|
|
|
streaming=True,
|
|
|
|
)
|
2025-03-31 00:38:58 -07:00
|
|
|
self.data = self.data.shuffle(seed=self.random_seed)
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Conversation Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class ConversationDataset(HuggingFaceDataset):
|
|
|
|
"""Dataset for conversation data with multimodal support."""
|
|
|
|
SUPPORTED_DATASET_PATHS = {
|
|
|
|
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
|
|
|
|
}
|
2025-03-10 00:23:11 -07:00
|
|
|
|
|
|
|
def sample(self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
output_len: Optional[int] = None,
|
2025-03-13 21:07:54 -07:00
|
|
|
enable_multimodal_chat: bool = False,
|
2025-03-10 00:23:11 -07:00
|
|
|
**kwargs) -> list:
|
2025-03-31 00:38:58 -07:00
|
|
|
# Filter examples with at least 2 conversations
|
|
|
|
filtered_data = self.data.filter(
|
|
|
|
lambda x: len(x["conversations"]) >= 2)
|
2025-03-10 00:23:11 -07:00
|
|
|
sampled_requests = []
|
|
|
|
dynamic_output = output_len is None
|
|
|
|
|
2025-03-31 00:38:58 -07:00
|
|
|
for item in filtered_data:
|
2025-03-10 00:23:11 -07:00
|
|
|
if len(sampled_requests) >= num_requests:
|
|
|
|
break
|
|
|
|
conv = item["conversations"]
|
|
|
|
prompt, completion = conv[0]["value"], conv[1]["value"]
|
|
|
|
|
|
|
|
prompt_ids = tokenizer(prompt).input_ids
|
|
|
|
completion_ids = tokenizer(completion).input_ids
|
|
|
|
prompt_len = len(prompt_ids)
|
|
|
|
completion_len = len(completion_ids)
|
|
|
|
output_len = completion_len if dynamic_output else output_len
|
|
|
|
assert isinstance(output_len, int) and output_len > 0
|
|
|
|
if dynamic_output and not is_valid_sequence(
|
|
|
|
prompt_len, completion_len):
|
|
|
|
continue
|
|
|
|
mm_content = process_image(
|
|
|
|
item["image"]) if "image" in item else None
|
2025-03-13 21:07:54 -07:00
|
|
|
if enable_multimodal_chat:
|
|
|
|
# Note: when chat is enabled the request prompt_len is no longer
|
|
|
|
# accurate and we will be using request output to count the
|
|
|
|
# actual prompt len and output len
|
|
|
|
prompt = self.apply_multimodal_chat_transformation(
|
|
|
|
prompt, mm_content)
|
2025-03-10 00:23:11 -07:00
|
|
|
sampled_requests.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
multi_modal_data=mm_content,
|
|
|
|
))
|
2025-03-19 21:32:58 -07:00
|
|
|
self.maybe_oversample_requests(sampled_requests, num_requests)
|
2025-03-10 00:23:11 -07:00
|
|
|
return sampled_requests
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Vision Arena Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
2025-03-13 21:07:54 -07:00
|
|
|
class VisionArenaDataset(HuggingFaceDataset):
|
2025-03-10 00:23:11 -07:00
|
|
|
"""
|
|
|
|
Vision Arena Dataset.
|
|
|
|
"""
|
|
|
|
|
|
|
|
DEFAULT_OUTPUT_LEN = 128
|
2025-03-31 00:38:58 -07:00
|
|
|
SUPPORTED_DATASET_PATHS = {
|
|
|
|
"lmarena-ai/VisionArena-Chat":
|
|
|
|
lambda x: x["conversation"][0][0]["content"],
|
|
|
|
"lmarena-ai/vision-arena-bench-v0.1":
|
|
|
|
lambda x: x["turns"][0][0]["content"]
|
|
|
|
}
|
2025-03-10 00:23:11 -07:00
|
|
|
|
2025-03-19 21:32:58 -07:00
|
|
|
def sample(
|
|
|
|
self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
output_len: Optional[int] = None,
|
|
|
|
enable_multimodal_chat: bool = False,
|
|
|
|
**kwargs,
|
|
|
|
) -> list:
|
2025-03-10 00:23:11 -07:00
|
|
|
output_len = (output_len
|
|
|
|
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
|
|
|
sampled_requests = []
|
|
|
|
for item in self.data:
|
|
|
|
if len(sampled_requests) >= num_requests:
|
|
|
|
break
|
2025-03-31 00:38:58 -07:00
|
|
|
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
|
|
|
|
if parser_fn is None:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unsupported dataset path: {self.dataset_path}")
|
|
|
|
prompt = parser_fn(item)
|
2025-03-10 00:23:11 -07:00
|
|
|
mm_content = process_image(item["images"][0])
|
2025-03-13 21:07:54 -07:00
|
|
|
prompt_len = len(tokenizer(prompt).input_ids)
|
|
|
|
if enable_multimodal_chat:
|
|
|
|
# Note: when chat is enabled the request prompt_len is no longer
|
|
|
|
# accurate and we will be using request output to count the
|
|
|
|
# actual prompt len
|
|
|
|
prompt = self.apply_multimodal_chat_transformation(
|
|
|
|
prompt, mm_content)
|
2025-03-10 00:23:11 -07:00
|
|
|
sampled_requests.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
multi_modal_data=mm_content,
|
|
|
|
))
|
2025-03-19 21:32:58 -07:00
|
|
|
self.maybe_oversample_requests(sampled_requests, num_requests)
|
2025-03-10 00:23:11 -07:00
|
|
|
return sampled_requests
|
2025-03-27 19:47:05 -07:00
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# Instruct Coder Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class InstructCoderDataset(HuggingFaceDataset):
|
|
|
|
"""
|
|
|
|
InstructCoder Dataset.
|
|
|
|
https://huggingface.co/datasets/likaixin/InstructCoder
|
|
|
|
|
2025-03-31 00:38:58 -07:00
|
|
|
InstructCoder is the dataset designed for general code editing. It consists
|
|
|
|
of 114,239 instruction-input-output triplets, and covers multiple distinct
|
|
|
|
code editing scenario.
|
2025-03-27 19:47:05 -07:00
|
|
|
"""
|
|
|
|
|
|
|
|
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
|
2025-03-31 00:38:58 -07:00
|
|
|
SUPPORTED_DATASET_PATHS = {
|
|
|
|
"likaixin/InstructCoder",
|
|
|
|
}
|
2025-03-27 19:47:05 -07:00
|
|
|
|
|
|
|
def sample(self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
output_len: Optional[int] = None,
|
|
|
|
enable_multimodal_chat: bool = False,
|
|
|
|
**kwargs) -> list:
|
|
|
|
output_len = (output_len
|
|
|
|
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
|
|
|
|
sampled_requests = []
|
|
|
|
for item in self.data:
|
|
|
|
if len(sampled_requests) >= num_requests:
|
|
|
|
break
|
|
|
|
prompt = f"{item['instruction']}:\n{item['input']}"
|
|
|
|
prompt_len = len(tokenizer(prompt).input_ids)
|
|
|
|
sampled_requests.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
))
|
|
|
|
self.maybe_oversample_requests(sampled_requests, num_requests)
|
|
|
|
return sampled_requests
|
2025-04-02 23:09:18 -07:00
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# AIMO Dataset Implementation
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
class AIMODataset(HuggingFaceDataset):
|
|
|
|
"""
|
|
|
|
Dataset class for processing a AIMO dataset with reasoning questions.
|
|
|
|
"""
|
|
|
|
SUPPORTED_DATASET_PATHS = {
|
|
|
|
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
|
|
|
|
"AI-MO/NuminaMath-CoT"
|
|
|
|
}
|
|
|
|
|
|
|
|
def sample(self,
|
|
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
|
|
num_requests: int,
|
|
|
|
output_len: Optional[int] = None,
|
|
|
|
**kwargs) -> list:
|
|
|
|
sampled_requests = []
|
|
|
|
dynamic_output = output_len is None
|
|
|
|
|
|
|
|
for item in self.data:
|
|
|
|
if len(sampled_requests) >= num_requests:
|
|
|
|
break
|
|
|
|
prompt, completion = item['problem'], item["solution"]
|
|
|
|
|
|
|
|
prompt_ids = tokenizer(prompt).input_ids
|
|
|
|
completion_ids = tokenizer(completion).input_ids
|
|
|
|
prompt_len = len(prompt_ids)
|
|
|
|
completion_len = len(completion_ids)
|
|
|
|
output_len = completion_len if dynamic_output else output_len
|
|
|
|
assert isinstance(output_len, int) and output_len > 0
|
|
|
|
if dynamic_output and not is_valid_sequence(prompt_len,
|
|
|
|
completion_len,
|
|
|
|
max_prompt_len=2048,
|
|
|
|
max_total_len=32000):
|
|
|
|
continue
|
|
|
|
sampled_requests.append(
|
|
|
|
SampleRequest(
|
|
|
|
prompt=prompt,
|
|
|
|
prompt_len=prompt_len,
|
|
|
|
expected_output_len=output_len,
|
|
|
|
multi_modal_data=None,
|
|
|
|
))
|
|
|
|
self.maybe_oversample_requests(sampled_requests, num_requests)
|
|
|
|
return sampled_requests
|